TY - JOUR
T1 - Disruption of REDD1 gene ameliorates sepsis-induced decrease in mTORC1 signaling but has divergent effects on proteolytic signaling in skeletal muscle
AU - Steiner, Jennifer L.
AU - Crowell, Kristen T.
AU - Kimball, Scot R.
AU - Lang, Charles H.
N1 - Publisher Copyright:
© 2015 the American Physiological Society.
PY - 2015/12/15
Y1 - 2015/12/15
N2 - Sepsis-induced skeletal muscle atrophy and weakness are due in part to decreased mTORC1-mediated protein synthesis and increased proteolysis via the autophagy-lysosomal system and ubiquitin-proteasome pathway. The REDD1 (regulated in development and DNA damage-1) protein is increased in sepsis and can negatively regulate mTORC1 activity. However, the contribution of REDD1 to the sepsis-induced change in muscle protein synthesis and degradation has not been determined. Sepsis was produced by cecal ligation and puncture in female REDD1−/− or wild-type (WT) mice, and end points were assessed 24 h later in gastrocnemius; time-matched, pair-fed controls of each genotype were included. Sepsis increased REDD1 protein 300% in WT mice, whereas REDD1 was absent in REDD1−/− muscle. Sepsis decreased protein synthesis and phosphorylation of downstream targets of mTORC1 (S6K1 Thr389, rpS6 Ser240/244, 4E-BP1 Ser65) in WT but not REDD1−/− mice. However, Akt and PRAS40 phosphorylation was suppressed in both sham and septic muscle from REDD1−/− mice despite unaltered PDK1, PP2A, or TSC2 expression. Sepsis increased autophagy as indicated by decreased ULK1 Ser757phosphorylation and p62 abundance and increased LC3B-II/I in WT mice, whereas these changes were absent in septic REDD1−/− mice. Conversely, REDD1 deletion did not prevent the sepsis-induced decrease in IGF-I mRNA or the concomitant increase in IL-6, TNFα, MuRF1, and atrogin1 mRNA expression. Lastly, 5-day survival in a separate set of septic mice did not differ between WT and REDD1−/− mice. These data highlight the central role of REDD1 in regulating both protein synthesis and autophagy in skeletal muscle during sepsis.
AB - Sepsis-induced skeletal muscle atrophy and weakness are due in part to decreased mTORC1-mediated protein synthesis and increased proteolysis via the autophagy-lysosomal system and ubiquitin-proteasome pathway. The REDD1 (regulated in development and DNA damage-1) protein is increased in sepsis and can negatively regulate mTORC1 activity. However, the contribution of REDD1 to the sepsis-induced change in muscle protein synthesis and degradation has not been determined. Sepsis was produced by cecal ligation and puncture in female REDD1−/− or wild-type (WT) mice, and end points were assessed 24 h later in gastrocnemius; time-matched, pair-fed controls of each genotype were included. Sepsis increased REDD1 protein 300% in WT mice, whereas REDD1 was absent in REDD1−/− muscle. Sepsis decreased protein synthesis and phosphorylation of downstream targets of mTORC1 (S6K1 Thr389, rpS6 Ser240/244, 4E-BP1 Ser65) in WT but not REDD1−/− mice. However, Akt and PRAS40 phosphorylation was suppressed in both sham and septic muscle from REDD1−/− mice despite unaltered PDK1, PP2A, or TSC2 expression. Sepsis increased autophagy as indicated by decreased ULK1 Ser757phosphorylation and p62 abundance and increased LC3B-II/I in WT mice, whereas these changes were absent in septic REDD1−/− mice. Conversely, REDD1 deletion did not prevent the sepsis-induced decrease in IGF-I mRNA or the concomitant increase in IL-6, TNFα, MuRF1, and atrogin1 mRNA expression. Lastly, 5-day survival in a separate set of septic mice did not differ between WT and REDD1−/− mice. These data highlight the central role of REDD1 in regulating both protein synthesis and autophagy in skeletal muscle during sepsis.
UR - http://www.scopus.com/inward/record.url?scp=84959197901&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959197901&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00264.2015
DO - 10.1152/ajpendo.00264.2015
M3 - Article
C2 - 26487002
AN - SCOPUS:84959197901
SN - 0193-1849
VL - 309
SP - E981-E994
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 12
ER -