Abstract
Influences of alkali or alkaline earth sulfates on the hydration of cubic tricalcium aluminate (C3A) were evaluated by in situ dissolution rate measurements, by ex situ near-surface composition measurements with secondary ion mass spectrometry, and by in situ synchrotron X-ray diffraction to monitor precipitation of hydration products. Both slight reductions in dissolution rate and cation-specific interactions with the solid were observed. The near-surface Ca/Al ratio is significantly lower after some dissolution and the electrolyte cations are incorporated within the surface with different affinities (Mg2+ > K+ > Na+). An interfacial dissolution-reprecipitation mechanism may explain the observations as well as, or better than, a simple cation exchange. The sulfate concentration in solution affects the rates of both C3A dissolution and precipitation of hydration products. Sulfate ions likely adsorb at the hydrous Al-rich surface layer, thereby reducing the dissolution rate of aluminates and delaying the precipitation of aluminate hydration products.
Original language | English (US) |
---|---|
Article number | 105989 |
Journal | Cement and Concrete Research |
Volume | 130 |
DOIs | |
State | Published - Apr 2020 |
All Science Journal Classification (ASJC) codes
- Building and Construction
- General Materials Science