TY - JOUR
T1 - Distinct universality classes of diffusive transport from full counting statistics
AU - Gopalakrishnan, Sarang
AU - Morningstar, Alan
AU - Vasseur, Romain
AU - Khemani, Vedika
N1 - Publisher Copyright:
© 2024 American Physical Society.
PY - 2024/1/1
Y1 - 2024/1/1
N2 - The hydrodynamic transport of local conserved densities furnishes an effective coarse-grained description of the dynamics of a many-body quantum system. However, the full quantum dynamics contains much more structure beyond the simplified hydrodynamic description. Here we show that systems with the same hydrodynamics can nevertheless belong to distinct dynamical universality classes, as revealed by new classes of experimental observables accessible in synthetic quantum systems, which can, for instance, measure simultaneous site-resolved snapshots of all of the particles in a system. Specifically, we study the full counting statistics of spin transport, whose first moment is related to linear-response transport, but the higher moments go beyond. We present an analytic theory of the full counting statistics of spin transport in various integrable and nonintegrable anisotropic one-dimensional spin models, including the XXZ spin chain. We find that spin transport, while diffusive on average, is governed by a distinct non-Gaussian dynamical universality class in the models considered. We consider a setup in which the left and right half of the chain are initially created at different magnetization densities, and consider the probability distribution of the magnetization transferred between the two half-chains. We derive a closed-form expression for the probability distribution of the magnetization transfer, in terms of random walks on the half-line. We show that this distribution strongly violates the large-deviation form expected for diffusive chaotic systems, and explain the physical origin of this violation. We discuss the crossovers that occur as the initial state is brought closer to global equilibrium. Our predictions can directly be tested in experiments using quantum gas microscopes or superconducting qubit arrays.
AB - The hydrodynamic transport of local conserved densities furnishes an effective coarse-grained description of the dynamics of a many-body quantum system. However, the full quantum dynamics contains much more structure beyond the simplified hydrodynamic description. Here we show that systems with the same hydrodynamics can nevertheless belong to distinct dynamical universality classes, as revealed by new classes of experimental observables accessible in synthetic quantum systems, which can, for instance, measure simultaneous site-resolved snapshots of all of the particles in a system. Specifically, we study the full counting statistics of spin transport, whose first moment is related to linear-response transport, but the higher moments go beyond. We present an analytic theory of the full counting statistics of spin transport in various integrable and nonintegrable anisotropic one-dimensional spin models, including the XXZ spin chain. We find that spin transport, while diffusive on average, is governed by a distinct non-Gaussian dynamical universality class in the models considered. We consider a setup in which the left and right half of the chain are initially created at different magnetization densities, and consider the probability distribution of the magnetization transferred between the two half-chains. We derive a closed-form expression for the probability distribution of the magnetization transfer, in terms of random walks on the half-line. We show that this distribution strongly violates the large-deviation form expected for diffusive chaotic systems, and explain the physical origin of this violation. We discuss the crossovers that occur as the initial state is brought closer to global equilibrium. Our predictions can directly be tested in experiments using quantum gas microscopes or superconducting qubit arrays.
UR - http://www.scopus.com/inward/record.url?scp=85182394149&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85182394149&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.109.024417
DO - 10.1103/PhysRevB.109.024417
M3 - Article
AN - SCOPUS:85182394149
SN - 2469-9950
VL - 109
JO - Physical Review B
JF - Physical Review B
IS - 2
M1 - 024417
ER -