Distributed access control of volatile renewable energy resources

Minghui Zhu, Na Li, Wenbo Shi, Rajit Gadh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

In this paper, we develop a general framework of distributed access control which allows for anytime connections and disconnections of volatile renewable energy resources in the power grid. We formally prove that the hard state constraints are satisfied all the time and the asymptotic stability is reached if connections and disconnections only happen for a finite number of times. Our framework and analysis leverage the tools of input-to-state stability and small gain theorems in nonlinear systems. The performance of our framework is illustrated by a case study on frequency control with wind integration.

Original languageEnglish (US)
Title of host publication2014 IEEE PES General Meeting / Conference and Exposition
PublisherIEEE Computer Society
EditionOctober
ISBN (Electronic)9781479964154
DOIs
StatePublished - Oct 29 2014
Event2014 IEEE Power and Energy Society General Meeting - National Harbor, United States
Duration: Jul 27 2014Jul 31 2014

Publication series

NameIEEE Power and Energy Society General Meeting
NumberOctober
Volume2014-October
ISSN (Print)1944-9925
ISSN (Electronic)1944-9933

Other

Other2014 IEEE Power and Energy Society General Meeting
Country/TerritoryUnited States
CityNational Harbor
Period7/27/147/31/14

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Nuclear Energy and Engineering
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Distributed access control of volatile renewable energy resources'. Together they form a unique fingerprint.

Cite this