Distributed big-data optimization via block-iterative convexification and averaging

Ivano Notarnicola, Ying Sun, Gesualdo Scutari, Giuseppe Notarstefano

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

In this paper, we study distributed big-data non-convex optimization in multi-Agent networks. We consider the (constrained) minimization of the sum of a smooth (possibly) nonconvex function, i.e., the agents' sum-utility, plus a convex (possibly) nonsmooth regularizer. Our interest is in big-data problems wherein there is a large number of variables to optimize. If treated by means of standard distributed optimization algorithms, these large-scale problems may be intractable, due to the prohibitive local computation and communication burden at each node. We propose a novel distributed solution method whereby at each iteration agents optimize and then communicate (in an uncoordinated fashion) only a subset of their decision variables. To deal with non-convexity of the cost function, the novel scheme hinges on Successive Convex Approximation (SCA) techniques coupled with i) a tracking mechanism instrumental to locally estimate gradient averages; and ii) a novel block-wise consensus-based protocol to perform local block-Averaging operations and gradient tacking. Asymptotic convergence to stationary solutions of the nonconvex problem is established. Finally, numerical results show the effectiveness of the proposed algorithm and highlight how the block dimension impacts on the communication overhead and practical convergence speed.

Original languageEnglish (US)
Title of host publication2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2281-2288
Number of pages8
ISBN (Electronic)9781509028733
DOIs
StatePublished - Jun 28 2017
Event56th IEEE Annual Conference on Decision and Control, CDC 2017 - Melbourne, Australia
Duration: Dec 12 2017Dec 15 2017

Publication series

Name2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
Volume2018-January

Other

Other56th IEEE Annual Conference on Decision and Control, CDC 2017
Country/TerritoryAustralia
CityMelbourne
Period12/12/1712/15/17

All Science Journal Classification (ASJC) codes

  • Decision Sciences (miscellaneous)
  • Industrial and Manufacturing Engineering
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Distributed big-data optimization via block-iterative convexification and averaging'. Together they form a unique fingerprint.

Cite this