Distributed Inverse Constrained Reinforcement Learning for Multi-agent Systems

Shicheng Liu, Minghui Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

This paper considers the problem of recovering the policies of multiple interacting experts by estimating their reward functions and constraints where the demonstration data of the experts is distributed to a group of learners. We formulate this problem as a distributed bi-level optimization problem and propose a novel bi-level “distributed inverse constrained reinforcement learning” (D-ICRL) algorithm that allows the learners to collaboratively estimate the constraints in the outer loop and learn the corresponding policies and reward functions in the inner loop from the distributed demonstrations through intermittent communications. We formally guarantee that the distributed learners asymptotically achieve consensus which belongs to the set of stationary points of the bi-level optimization problem. Simulations are done to validate the proposed algorithm.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period11/28/2212/9/22

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Distributed Inverse Constrained Reinforcement Learning for Multi-agent Systems'. Together they form a unique fingerprint.

Cite this