Distributed primal-dual optimization for non-uniformly distributed data

Minhao Cheng, Cho Jui Hsieh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Distributed primal-dual optimization has received many focuses in the past few years. In this framework, training samples are stored in multiple machines. At each round, all the machines conduct a sequence of updates based on their local data, and then the local updates are synchronized and merged to obtain the update to the global model. All the previous approaches merge the local updates by averaging all of them with a uniform weight. However, in many real world applications data are not uniformly distributed on each machine, so the uniform weight is inadequate to capture the heterogeneity of local updates. To resolve this issue, we propose a better way to merge local updates in the primal-dual optimization framework. Instead of using a single weight for all the local updates, we develop a computational efficient algorithm to automatically choose the optimal weights for each machine. Furthermore, we propose an efficient way to estimate the duality gap of the merged update by exploiting the structure of the objective function, and this leads to an efficient line search algorithm based on the reduction of duality gap. Combining these two ideas, our algorithm is much faster and more scalable than existing methods on real world problems.

Original languageEnglish (US)
Title of host publicationProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
EditorsJerome Lang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2028-2034
Number of pages7
ISBN (Electronic)9780999241127
DOIs
StatePublished - 2018
Event27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden
Duration: Jul 13 2018Jul 19 2018

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2018-July
ISSN (Print)1045-0823

Other

Other27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Country/TerritorySweden
CityStockholm
Period7/13/187/19/18

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Distributed primal-dual optimization for non-uniformly distributed data'. Together they form a unique fingerprint.

Cite this