TY - GEN
T1 - Distributed threshold-based offloading for large-scale mobile cloud computing
AU - Qin, Xudong
AU - Li, Bin
AU - Ying, Lei
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/5/10
Y1 - 2021/5/10
N2 - Mobile cloud computing enables compute-limited mobile devices to perform real-time intensive computations such as speech recognition or object detection by leveraging powerful cloud servers. An important problem in large-scale mobile cloud computing is computational offloading where each mobile device decides when and how much computation should be uploaded to cloud servers by considering the local processing delay and the cost of using cloud servers. In this paper, we develop a distributed threshold-based offloading algorithm where it uploads an incoming computing task to cloud servers if the number of tasks queued at the device reaches the threshold, and processes it locally otherwise. The threshold is updated iteratively based on the computational load and the cost of using cloud servers. We formulate the problem as a symmetric game, and characterize the sufficient and necessary conditions for the existence and uniqueness of the Nash Equilibrium (NE) assuming exponential service times. Then, we show the convergence of our proposed distributed algorithm to the NE when the NE exists. Finally, we perform extensive simulations to validate our theoretical findings and demonstrate the efficiency of our proposed distributed algorithm under various practical scenarios such as general service times, imperfect server utilization estimation, and asynchronous threshold updates.
AB - Mobile cloud computing enables compute-limited mobile devices to perform real-time intensive computations such as speech recognition or object detection by leveraging powerful cloud servers. An important problem in large-scale mobile cloud computing is computational offloading where each mobile device decides when and how much computation should be uploaded to cloud servers by considering the local processing delay and the cost of using cloud servers. In this paper, we develop a distributed threshold-based offloading algorithm where it uploads an incoming computing task to cloud servers if the number of tasks queued at the device reaches the threshold, and processes it locally otherwise. The threshold is updated iteratively based on the computational load and the cost of using cloud servers. We formulate the problem as a symmetric game, and characterize the sufficient and necessary conditions for the existence and uniqueness of the Nash Equilibrium (NE) assuming exponential service times. Then, we show the convergence of our proposed distributed algorithm to the NE when the NE exists. Finally, we perform extensive simulations to validate our theoretical findings and demonstrate the efficiency of our proposed distributed algorithm under various practical scenarios such as general service times, imperfect server utilization estimation, and asynchronous threshold updates.
UR - http://www.scopus.com/inward/record.url?scp=85111914462&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111914462&partnerID=8YFLogxK
U2 - 10.1109/INFOCOM42981.2021.9488821
DO - 10.1109/INFOCOM42981.2021.9488821
M3 - Conference contribution
AN - SCOPUS:85111914462
T3 - Proceedings - IEEE INFOCOM
BT - INFOCOM 2021 - IEEE Conference on Computer Communications
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 40th IEEE Conference on Computer Communications, INFOCOM 2021
Y2 - 10 May 2021 through 13 May 2021
ER -