TY - JOUR
T1 - Distribution of aliphatic amines in CO, CV, and CK carbonaceous chondrites and relation to mineralogy and processing history
AU - Aponte, José C.
AU - Abreu, Neyda M.
AU - Glavin, Daniel P.
AU - Dworkin, Jason P.
AU - Elsila, Jamie E.
N1 - Funding Information:
Acknowledgments—US Antarctic meteorite samples are recovered by the Antarctic Search for Meteorites (ANSMET) program which has been funded by NSF and NASA, and characterized and curated by the Department of Mineral Sciences of the Smithsonian Institution and Astromaterials Curation Office at NASA Johnson Space Center. The authors thank T. McCoy, J. Hoskin, and the Smithsonian National Museum of Natural History—Division of Meteorites for providing the meteorite sample used in this study. Thanks for technical assistance to Dr. K. Crispin at Penn State, and Queenie H. S. Chan and an anonymous reviewer for insightful criticism and suggestions to improve the manuscript quality. This research was supported by the NASA Astrobiology Institute and the Goddard Center for Astrobiology and a grant from the Simons Foundation (SCOL award 302497 to J.P.D.).
Publisher Copyright:
© The Meteoritical Society, 2017.
PY - 2017/12
Y1 - 2017/12
N2 - The analysis of water-soluble organic compounds in meteorites provides valuable insights into the prebiotic synthesis of organic matter and the processes that occurred during the formation of the solar system. We investigated the concentration of aliphatic monoamines present in hot acid water extracts of the unaltered Antarctic carbonaceous chondrites, Dominion Range (DOM) 08006 (CO3) and Miller Range (MIL) 05013 (CO3), and the thermally altered meteorites, Allende (CV3), LAP 02206 (CV3), GRA 06101 (CV3), Allan Hills (ALH) 85002 (CK4), and EET 92002 (CK5). We have also reviewed and assessed the petrologic characteristics of the meteorites studied here to evaluate the effects of asteroidal processing on the abundance and molecular distributions of monoamines. The CO3, CV3, CK4, and CK5 meteorites studied here contain total concentrations of amines ranging from 1.2 to 4.0 nmol g−1 of meteorite; these amounts are 1–3 orders of magnitude below those observed in carbonaceous chondrites from the CI, CM, and CR groups. The low-amine abundances for CV and CK chondrites may be related to their extensive degree of thermal metamorphism and/or to their low original amine content. Although the CO3 meteorites, DOM 08006 and MIL 05013, do not show signs of thermal and aqueous alteration, their monoamine contents are comparable to those observed in moderately/extensively thermally altered CV3, CK4, and CK5 carbonaceous chondrites. The low content of monoamines in pristine CO carbonaceous chondrites suggests that the initial amounts, and not asteroidal processes, play a dominant role in the content of monoamines in carbonaceous chondrites. The primary monoamines, methylamine, ethylamine, and n-propylamine constitute the most abundant amines in the CO3, CV3, CK4, and CK5 meteorites studied here. Contrary to the predominance of n-ω-amino acid isomers in CO3 and thermally altered meteorites, there appears to be no preference for the larger n-amines.
AB - The analysis of water-soluble organic compounds in meteorites provides valuable insights into the prebiotic synthesis of organic matter and the processes that occurred during the formation of the solar system. We investigated the concentration of aliphatic monoamines present in hot acid water extracts of the unaltered Antarctic carbonaceous chondrites, Dominion Range (DOM) 08006 (CO3) and Miller Range (MIL) 05013 (CO3), and the thermally altered meteorites, Allende (CV3), LAP 02206 (CV3), GRA 06101 (CV3), Allan Hills (ALH) 85002 (CK4), and EET 92002 (CK5). We have also reviewed and assessed the petrologic characteristics of the meteorites studied here to evaluate the effects of asteroidal processing on the abundance and molecular distributions of monoamines. The CO3, CV3, CK4, and CK5 meteorites studied here contain total concentrations of amines ranging from 1.2 to 4.0 nmol g−1 of meteorite; these amounts are 1–3 orders of magnitude below those observed in carbonaceous chondrites from the CI, CM, and CR groups. The low-amine abundances for CV and CK chondrites may be related to their extensive degree of thermal metamorphism and/or to their low original amine content. Although the CO3 meteorites, DOM 08006 and MIL 05013, do not show signs of thermal and aqueous alteration, their monoamine contents are comparable to those observed in moderately/extensively thermally altered CV3, CK4, and CK5 carbonaceous chondrites. The low content of monoamines in pristine CO carbonaceous chondrites suggests that the initial amounts, and not asteroidal processes, play a dominant role in the content of monoamines in carbonaceous chondrites. The primary monoamines, methylamine, ethylamine, and n-propylamine constitute the most abundant amines in the CO3, CV3, CK4, and CK5 meteorites studied here. Contrary to the predominance of n-ω-amino acid isomers in CO3 and thermally altered meteorites, there appears to be no preference for the larger n-amines.
UR - http://www.scopus.com/inward/record.url?scp=85036580606&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85036580606&partnerID=8YFLogxK
U2 - 10.1111/maps.12959
DO - 10.1111/maps.12959
M3 - Article
AN - SCOPUS:85036580606
SN - 1086-9379
VL - 52
SP - 2632
EP - 2646
JO - Meteoritics and Planetary Science
JF - Meteoritics and Planetary Science
IS - 12
ER -