DNA assembly and enzymatic cutting in solutions: A gold nanoparticle based SERS detection strategy

Elizabeth Crew, Hong Yan, Liqin Lin, Jun Yin, Zakiya Skeete, Timur Kotlyar, Nuri Tchah, Jehwan Lee, Michael Bellavia, Isaac Goodshaw, Pharrah Joseph, Jin Luo, Susannah Gal, Chuan Jian Zhong

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

The ability to monitor biomolecular recognition such as DNA hybridization and enzymatic reactivity in solutions with high sensitivity is important for developing effective bioassay strategies. Surface enhanced Raman scattering (SERS) based on use of solid substrates to produce the SERS effect for the detection often requires substrate preparation which is ineffective for rapid monitoring. This report describes a new strategy exploiting a gold nanoparticle (AuNP) based interparticle "hot-spot" for SERS monitoring of DNA mediated assembly and enzyme induced cleavage of the assembly in solution phase. The DNAs consist of two different complementary DNA strands with a thiol modification for attachment to AuNPs of selected sizes. In a solution containing AuNPs conjugated with one of the single-stranded (ss) DNA and other AuNPs labeled with a Raman reporter molecule, 4-mercaptobenzoic acid (MBA), the introduction of the complementary DNA strand leads to a linkage of the two types of AuNPs, producing double-stranded (ds) DNA-AuNP assembly (ds-DNA-AuNPs) with an interparticle "hot-spot" for SERS detection of the diagnostic bands of the reporter. Upon introducing a restriction enzyme (e.g. MspI) into the ds-DNA-AuNP assembly solution, the removal of the interparticle "hot-spot" due to restriction enzyme cleavage of the ds-DNA leads to a decrease of the SERS signals. While the detailed cleavage process may depend on the reaction time and the amount of enzyme, the viability of using gold nanoparticle "hot-spot" based SERS monitoring of DNA assembly and enzyme cleavage is clearly demonstrated, which has important implications for developing new strategies for bioassays.

Original languageEnglish (US)
Pages (from-to)4941-4949
Number of pages9
JournalAnalyst
Volume138
Issue number17
DOIs
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Biochemistry
  • Environmental Chemistry
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'DNA assembly and enzymatic cutting in solutions: A gold nanoparticle based SERS detection strategy'. Together they form a unique fingerprint.

Cite this