TY - JOUR
T1 - DNA polymerase kappa microsatellite synthesis
T2 - Two distinct mechanisms of slippage-mediated errors
AU - Baptiste, Beverly A.
AU - Eckert, Kristin A.
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2012/12
Y1 - 2012/12
N2 - Microsatellite tandem repeats are frequent sites of strand slippage mutagenesis in the human genome. Microsatellite mutations often occur as insertion/deletion of a repeat motif (unit-based indels), and increase in frequency with increasing repeat length after a threshold is reached. We recently demonstrated that DNA polymerase κ (Pol κ) produces fewer unit-based indel errors within dinucleotide microsatellites than does polymerase δ. Here, we examined human Pol κ's error profile within microsatellite alleles of varying sequence composition and length, using an in vitro HSV-tk gap-filling assay. We observed that Pol κ displays relatively accurate synthesis for unit-based indels, using di- and tetranucleotide repeat templates longer than the threshold length. We observed an abrupt increase in the unit-based indel frequency when the total microsatellite length exceeds 28 nucleotides, suggesting that extended Pol κ protein-DNA interactions enhance fidelity of the enzyme when synthesizing these microsatellite alleles. In contrast, Pol κ is error-prone within the HSV-tk coding sequence, producing frequent single-base errors in a manner that is highly biased with regard to sequence context. Single-nucleotide errors are also created by Pol κ within di- and tetranucleotide repeats, independently of the microsatellite allele length and at a frequency per nucleotide similar to the frequency of single base errors within the coding sequence. These single-base errors represent the mutational signature of Pol κ, and we propose them a mechanism independent of homology-stabilized slippage. Pol κ's dual fidelity nature provides a unique research tool to explore the distinct mechanisms of slippage-mediated mutagenesis.
AB - Microsatellite tandem repeats are frequent sites of strand slippage mutagenesis in the human genome. Microsatellite mutations often occur as insertion/deletion of a repeat motif (unit-based indels), and increase in frequency with increasing repeat length after a threshold is reached. We recently demonstrated that DNA polymerase κ (Pol κ) produces fewer unit-based indel errors within dinucleotide microsatellites than does polymerase δ. Here, we examined human Pol κ's error profile within microsatellite alleles of varying sequence composition and length, using an in vitro HSV-tk gap-filling assay. We observed that Pol κ displays relatively accurate synthesis for unit-based indels, using di- and tetranucleotide repeat templates longer than the threshold length. We observed an abrupt increase in the unit-based indel frequency when the total microsatellite length exceeds 28 nucleotides, suggesting that extended Pol κ protein-DNA interactions enhance fidelity of the enzyme when synthesizing these microsatellite alleles. In contrast, Pol κ is error-prone within the HSV-tk coding sequence, producing frequent single-base errors in a manner that is highly biased with regard to sequence context. Single-nucleotide errors are also created by Pol κ within di- and tetranucleotide repeats, independently of the microsatellite allele length and at a frequency per nucleotide similar to the frequency of single base errors within the coding sequence. These single-base errors represent the mutational signature of Pol κ, and we propose them a mechanism independent of homology-stabilized slippage. Pol κ's dual fidelity nature provides a unique research tool to explore the distinct mechanisms of slippage-mediated mutagenesis.
UR - http://www.scopus.com/inward/record.url?scp=84868672661&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868672661&partnerID=8YFLogxK
U2 - 10.1002/em.21721
DO - 10.1002/em.21721
M3 - Article
C2 - 22965905
AN - SCOPUS:84868672661
SN - 0893-6692
VL - 53
SP - 787
EP - 796
JO - Environmental and Molecular Mutagenesis
JF - Environmental and Molecular Mutagenesis
IS - 9
ER -