TY - JOUR
T1 - Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer
T2 - Implications for tumour invasion
AU - Ma, P. C.
AU - Tretiakova, M. S.
AU - Nallasura, V.
AU - Jagadeeswaran, R.
AU - Husain, A. N.
AU - Salgia, R.
N1 - Funding Information:
Patrick C Ma is supported by NIH/National Cancer Institute-K08 award (1K08 CA102545), Ohio Cancer Research Associates ‘Give New Ideas A Chance’ grant, and American Cancer Society-Institutional Research grant (Case Comprehensive Cancer Center).
PY - 2007/7/31
Y1 - 2007/7/31
N2 - The c-MET receptor can be overexpressed, amplified, or mutated in solid tumours including small cell lung cancer (SCLC). In c-MET-overexpressing SCLC cell line NCI-H69, hepatocyte growth factor (HGF) dramatically induced c-MET phosphorylation at phosphoepitopes pY1230/1234/1235 (catalytic tyrosine kinase), pY1003 (juxtamembrane), and also of paxillin at pY31 (CRKL-binding site). We utilised a global proteomics phosphoantibody array approach to identify further c-MET/HGF signal transduction intermediates in SCLC. Strong HGF induction of specific phosphorylation sites in phosphoproteins involved in c-MET/HGF signal transduction was detected, namely adducin-α [S724], adducin-γ [S662], CREB [S133], ERK1 [T185/Y187], ERK1/2 [T202/Y204], ERK2 [T185/Y187], MAPKK (MEK) 1/2 [S221/S225], MAPKK (MEK) 3/6 [S189/S207], RB [S612], RB1 [S780], JNK [T183/Y185], STAT3 [S727], focal adhesion kinase (FAK) [Y576/S722/S910], p38α-MAPK [T180/Y182], and AKT1[S473] and [T308]. Conversely, inhibition of phosphorylation by HGF in protein kinase C (PKC), protein kinase R (PKR), and also CDK1 was identified. Phosphoantibody-based immunohistochemical analysis of SCLC tumour tissue and microarray established the role of c-MET in SCLC biology. This supports a role of c-MET activation in tumour invasive front in the tumour progression and invasion involving FAK and AKT downstream. The c-MET serves as an attractive therapeutic target in SCLC, as shown through small interfering RNA (siRNA) and selective prototype c-MET inhibitor SU11274, inhibiting the phosphorylation of c-MET itself and its downstream molecules such as AKT, S6 kinase, and ERK1/2. Investigation of mechanisms of invasion and, ultimately, metastasis in SCLC would be very useful with these signal transduction molecules.
AB - The c-MET receptor can be overexpressed, amplified, or mutated in solid tumours including small cell lung cancer (SCLC). In c-MET-overexpressing SCLC cell line NCI-H69, hepatocyte growth factor (HGF) dramatically induced c-MET phosphorylation at phosphoepitopes pY1230/1234/1235 (catalytic tyrosine kinase), pY1003 (juxtamembrane), and also of paxillin at pY31 (CRKL-binding site). We utilised a global proteomics phosphoantibody array approach to identify further c-MET/HGF signal transduction intermediates in SCLC. Strong HGF induction of specific phosphorylation sites in phosphoproteins involved in c-MET/HGF signal transduction was detected, namely adducin-α [S724], adducin-γ [S662], CREB [S133], ERK1 [T185/Y187], ERK1/2 [T202/Y204], ERK2 [T185/Y187], MAPKK (MEK) 1/2 [S221/S225], MAPKK (MEK) 3/6 [S189/S207], RB [S612], RB1 [S780], JNK [T183/Y185], STAT3 [S727], focal adhesion kinase (FAK) [Y576/S722/S910], p38α-MAPK [T180/Y182], and AKT1[S473] and [T308]. Conversely, inhibition of phosphorylation by HGF in protein kinase C (PKC), protein kinase R (PKR), and also CDK1 was identified. Phosphoantibody-based immunohistochemical analysis of SCLC tumour tissue and microarray established the role of c-MET in SCLC biology. This supports a role of c-MET activation in tumour invasive front in the tumour progression and invasion involving FAK and AKT downstream. The c-MET serves as an attractive therapeutic target in SCLC, as shown through small interfering RNA (siRNA) and selective prototype c-MET inhibitor SU11274, inhibiting the phosphorylation of c-MET itself and its downstream molecules such as AKT, S6 kinase, and ERK1/2. Investigation of mechanisms of invasion and, ultimately, metastasis in SCLC would be very useful with these signal transduction molecules.
UR - http://www.scopus.com/inward/record.url?scp=34547558390&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547558390&partnerID=8YFLogxK
U2 - 10.1038/sj.bjc.6603884
DO - 10.1038/sj.bjc.6603884
M3 - Article
C2 - 17667909
AN - SCOPUS:34547558390
SN - 0007-0920
VL - 97
SP - 368
EP - 377
JO - British Journal of Cancer
JF - British Journal of Cancer
IS - 3
ER -