DPW-5 analysis of the CRM in a wing-body configuration using structured and unstructured meshes

Anthony J. Sclafani, John C. Vassberg, Chad Winkler, Andrew J. Dorgan, Mori Mani, Michael E. Olsen, James G. Coder

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

Two general purpose Reynolds Averaged Navier-Stokes (RANS) flow solvers, OVERFLOW and BCFD, are used to analyze the NASA Common Research Model (CRM) in a wing-body configuration. The codes are run on structured and unstructured common grid families built specifically for the 5th AIAA CFD Drag Prediction Workshop (DPW-5) allowing for meaningful comparison of data. There are six grid sizes in the family ranging from a 0.6 million cell "Tiny" mesh up to a 138 million cell "Super-Fine" mesh. Results from a grid convergence study are evaluated for each solver and grid type with focus on isolating individual effects of turbulence model and differencing scheme on computed forces, moments and wing pressures. A "Medium" mesh consisting of 5.1 million cells is used to run the wing-body configuration through an angle-of-attack sweep as part of a buffet onset study. The solutions are used to better understand variations in high speed wing separation prediction driven by the strengthening shock and by corner flow physics at the wing-body juncture. Numerical simulation of side-of-body separation continues to be a challenge for RANS methods where solutions are sensitive to grid density and turbulence model, amongst other variables. However, a newly developed quadratic constitutive relation (QCR) is employed with favorable results. Two additional studies are conducted to: a) investigate how well common grid solutions compare with those on a grid built using best practices for a given flow solver, and b) quantify the effects of transition and wing twist to provide additional corrections needed for comparisons of CFD results with experimental data.

Original languageEnglish (US)
Title of host publication51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
StatePublished - 2013
Event51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013 - Grapevine, TX, United States
Duration: Jan 7 2013Jan 10 2013

Publication series

Name51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013

Other

Other51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
Country/TerritoryUnited States
CityGrapevine, TX
Period1/7/131/10/13

All Science Journal Classification (ASJC) codes

  • Space and Planetary Science
  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'DPW-5 analysis of the CRM in a wing-body configuration using structured and unstructured meshes'. Together they form a unique fingerprint.

Cite this