DRIVER ASSISTED CONTROL STRATEGIES: THEORY and EXPERIMENT

Mark DePoorter, Sean Brennan, Andrew Alleyne

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

This work investigates the use of feedback controller augmentation of driver inputs to achieve a desired vehicle performance. The vehicle performance is specified as a Reference Model. The driver maintains nominal control of the vehicle by direct actuation of the front steering inputs. The controller then determines the appropriate rear steer inputs necessary for tracking the reference model. As a consequence the driver is able to specify, within limits, the type of handling behavior required of the vehicle. A strategy based on yaw rate control is presented. An appropriate vehicle model is developed and a polynomial pole placement technique is used to control the vehicle. To account for vehicle model changes due to variations in forward velocity, a continuous time Recursive Least Squares approach is examined for on-line identification and adaptive control. The strategy and control designs are implemented experimentally on the Illinois Roadway Simulator (IRS), a scale vehicle testbed for vehicle dynamics and controls. Results and limitations are discussed.

Original languageEnglish (US)
Title of host publicationDynamic Systems and Control
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages721-728
Number of pages8
ISBN (Electronic)9780791815861
DOIs
StatePublished - 1998
EventASME 1998 International Mechanical Engineering Congress and Exposition, IMECE 1998 - Anaheim, United States
Duration: Nov 15 1998Nov 20 1998

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume1998-I

Conference

ConferenceASME 1998 International Mechanical Engineering Congress and Exposition, IMECE 1998
Country/TerritoryUnited States
CityAnaheim
Period11/15/9811/20/98

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'DRIVER ASSISTED CONTROL STRATEGIES: THEORY and EXPERIMENT'. Together they form a unique fingerprint.

Cite this