Drop pinch-off and filament dynamics of wormlike micellar fluids

Linda B. Smolka, Andrew Belmonte

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


Observations are presented of several novel phenomena involved in the dynamics of a pendant drop of viscoelastic micellar fluid falling through air. Generally, when a drop falls a filament forms connecting it to the orifice; the filament eventually breaks due to an instability. The filament dynamics and instabilities reported here are very different from the standard Newtonian and non-Newtonian cases. At low surfactant concentration, the cylindrical filament necks down and pinches off rapidly (∼10 ms) at one location along the filament. After pinch-off, the free filament ends retract and no satellite drops are produced. At higher concentrations, the pinch-off also occurs along the filament, but in a more gradual process (∼1 s). Furthermore, the free filament ends do not fully retract, instead retaining some of their deformation. The falling drop is also observed to slow or even stop (stall) before pinch-off, indicating that sufficient elastic stress has built up to balance its weight. We investigate this stall by generalizing Keiller's simple model for filament motion [J. Non-Newtonian Fluid Mech. 42 (1992) 37], using instead the FENE-CR constitutive equation. Numerical simulations of this model indicate that stall occurs in the range of low solvent viscosity, high elasticity, and high molecular weight. At the highest concentrations, we observe a surface "blistering" instability along the filament long before pinch-off occurs.

Original languageEnglish (US)
Pages (from-to)1-25
Number of pages25
JournalJournal of Non-Newtonian Fluid Mechanics
Issue number1
StatePublished - Oct 20 2003

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering
  • Applied Mathematics


Dive into the research topics of 'Drop pinch-off and filament dynamics of wormlike micellar fluids'. Together they form a unique fingerprint.

Cite this