TY - JOUR
T1 - Drosophila β(Heavy)-spectrin is essential for development and contributes to specific cell fates in the eye
AU - Thomas, Graham H.
AU - Zarnescu, Daniela C.
AU - Juedes, Amy E.
AU - Bales, Mark A.
AU - Londergan, Amy
AU - Korte, Carol C.
AU - Kiehart, Daniel P.
N1 - Copyright:
Copyright 2004 Elsevier Science B.V., Amsterdam. All rights reserved.
PY - 1998
Y1 - 1998
N2 - The spectrin membrane skeleton is a ubiquitous cytoskeletal structure with several cellular roles, including the maintenance of cell integrity, determination of cell shape and as a contributor to cell polarity. We have isolated mutations in the gene encoding β(Heavy)-spectrin in Drosophila, and have named this essential locus karst. karst mutant individuals have a pleiotropic phenotype characterized by extensive larval lethality and, in adult escapers, rough eyes, bent wings, tracheal defects and infertility. Within karst mutant eyes, a significant number of ommatidia specifically lack photoreceptor R7 alongside more complex morphological defects. Immunolocalization of β(Heavy)-spectrin in wild-type eye-antennal and wing imaginal discs reveals that β(Heavy)-spectrin is present in a restricted subdomain of the membrane skeleton that colocalizes with DE-cadherin. We propose a model where normal levels of Sevenless signaling are dependent on tight cell-cell adhesion facilitated by the β(Heavy)-spectrin membrane skeleton. Immunolocalization of β(Heavy)-spectrin in the adult and larval midgut indicates that it is a terminal web protein, but we see no gross morphological defects in the adult apical brush border in karst mutant flies. Rhodamine phalloidin staining of karst mutant ovaries similarly reveals no conspicuous defect in the actin cytoskeleton or cellular morphology in egg chambers. This is in contrast to mutations in α-spectrin, the molecular partner of β(Heavy)-spectrin, which affect cellular structure in both the larval gut and adult ovaries. Our results emphasize the fundamental contribution of the spectrin membrane skeleton to normal development and reveals a critical interplay between the integrity of a cell's membrane skeleton, the structure of cell-cell contacts and cell signaling.
AB - The spectrin membrane skeleton is a ubiquitous cytoskeletal structure with several cellular roles, including the maintenance of cell integrity, determination of cell shape and as a contributor to cell polarity. We have isolated mutations in the gene encoding β(Heavy)-spectrin in Drosophila, and have named this essential locus karst. karst mutant individuals have a pleiotropic phenotype characterized by extensive larval lethality and, in adult escapers, rough eyes, bent wings, tracheal defects and infertility. Within karst mutant eyes, a significant number of ommatidia specifically lack photoreceptor R7 alongside more complex morphological defects. Immunolocalization of β(Heavy)-spectrin in wild-type eye-antennal and wing imaginal discs reveals that β(Heavy)-spectrin is present in a restricted subdomain of the membrane skeleton that colocalizes with DE-cadherin. We propose a model where normal levels of Sevenless signaling are dependent on tight cell-cell adhesion facilitated by the β(Heavy)-spectrin membrane skeleton. Immunolocalization of β(Heavy)-spectrin in the adult and larval midgut indicates that it is a terminal web protein, but we see no gross morphological defects in the adult apical brush border in karst mutant flies. Rhodamine phalloidin staining of karst mutant ovaries similarly reveals no conspicuous defect in the actin cytoskeleton or cellular morphology in egg chambers. This is in contrast to mutations in α-spectrin, the molecular partner of β(Heavy)-spectrin, which affect cellular structure in both the larval gut and adult ovaries. Our results emphasize the fundamental contribution of the spectrin membrane skeleton to normal development and reveals a critical interplay between the integrity of a cell's membrane skeleton, the structure of cell-cell contacts and cell signaling.
UR - http://www.scopus.com/inward/record.url?scp=0031596549&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031596549&partnerID=8YFLogxK
U2 - 10.1242/dev.125.11.2125
DO - 10.1242/dev.125.11.2125
M3 - Article
C2 - 9570776
AN - SCOPUS:0031596549
SN - 0950-1991
VL - 125
SP - 2125
EP - 2134
JO - Development
JF - Development
IS - 11
ER -