DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content

Seyed Armin Vakil Ghahani, Mahmut Taylan Kandemir, Jagadish B. Kotra

Research output: Contribution to journalArticlepeer-review

Abstract

The number of cores and the capacities of main memory in modern systems have been growing significantly. Specifically, memory scaling, although at a slower pace than computation scaling, provided opportunities for very large DRAMs with Terabytes (TBs) capacity. Consequently, addressing the performance and energy consumption bottlenecks of DRAMs is more important than ever. DRAM memory refresh operation is one of the main contributing factors to the memory overheads, especially for large capacity DRAMs used in modern servers and emerging large-scale data centers. This paper addresses the memory refresh problem by leveraging the fact that most cloud servers host virtualized systems that use similar kernels, libraries, etc. We propose and experimentally evaluate a novel approach that exploits this observation to address the DRAM refresh overhead in such systems. More specifically, in this work, we present DSM, a light-weight hardware extension in memory controller to detect the pages with same content in memory and refresh only one of them and redirect the requests to the others to this page. Our detailed experimental analysis shows that the proposed DSM design can reduce 99th percentile memory access latency by up to 2.01x, and it also reduces the overall memory energy consumption by up to 8.5%.

Original languageEnglish (US)
Pages (from-to)91-92
Number of pages2
JournalPerformance Evaluation Review
Volume48
Issue number1
DOIs
StatePublished - Jul 8 2020

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content'. Together they form a unique fingerprint.

Cite this