TY - JOUR
T1 - Dual-Polarized Embroidered Textile Armband Antenna Array with Omnidirectional Radiation for On-/Off-Body Wearable Applications
AU - Mao, Chun Xu
AU - Vital, Dieff
AU - Werner, Douglas H.
AU - Wu, Yuhao
AU - Bhardwaj, Shubhendu
N1 - Publisher Copyright:
© 1963-2012 IEEE.
PY - 2020/4
Y1 - 2020/4
N2 - In this article, a novel dual-polarized embroidered textile antenna array with an omnidirectional radiation pattern is proposed for both on- and off-body wearable applications. The flexible antenna is composed of a group of circularly oriented dual-polarized patch antennas excited with uniform amplitude and phase. The antenna array can be wrapped around a cylinder, such as an arm or a leg, for realizing a quasi-omnidirectional radiation pattern in the azimuthal plane, which is highly desirable in both on-body and off-body wearable applications. The operating principles and design consideration for how to achieve the omnidirectional radiation and how to avoid radiation nulls are investigated in detail. Moreover, these analytical studies are verified through the experimental results. In addition, a dual orthogonal polarization capability is employed to improve the link reliability. Due to the high front-to-back ratio (FBR) exhibited by each patch antenna element, the proposed omnidirectional antenna array also features a low specific absorption rate (SAR) and high efficiency, which are extremely important for wearable applications. As a proof-of-concept, an antenna array prototype operating at 5.8 GHz is designed, fabricated, and tested. The measured results agree reasonably well with the simulations in terms of S-parameters, polarization isolation, and radiation patterns, demonstrating that the proposed antenna array is ideally suited for potential wearable applications.
AB - In this article, a novel dual-polarized embroidered textile antenna array with an omnidirectional radiation pattern is proposed for both on- and off-body wearable applications. The flexible antenna is composed of a group of circularly oriented dual-polarized patch antennas excited with uniform amplitude and phase. The antenna array can be wrapped around a cylinder, such as an arm or a leg, for realizing a quasi-omnidirectional radiation pattern in the azimuthal plane, which is highly desirable in both on-body and off-body wearable applications. The operating principles and design consideration for how to achieve the omnidirectional radiation and how to avoid radiation nulls are investigated in detail. Moreover, these analytical studies are verified through the experimental results. In addition, a dual orthogonal polarization capability is employed to improve the link reliability. Due to the high front-to-back ratio (FBR) exhibited by each patch antenna element, the proposed omnidirectional antenna array also features a low specific absorption rate (SAR) and high efficiency, which are extremely important for wearable applications. As a proof-of-concept, an antenna array prototype operating at 5.8 GHz is designed, fabricated, and tested. The measured results agree reasonably well with the simulations in terms of S-parameters, polarization isolation, and radiation patterns, demonstrating that the proposed antenna array is ideally suited for potential wearable applications.
UR - http://www.scopus.com/inward/record.url?scp=85083292208&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083292208&partnerID=8YFLogxK
U2 - 10.1109/TAP.2019.2951517
DO - 10.1109/TAP.2019.2951517
M3 - Article
AN - SCOPUS:85083292208
SN - 0018-926X
VL - 68
SP - 2575
EP - 2584
JO - IEEE Transactions on Antennas and Propagation
JF - IEEE Transactions on Antennas and Propagation
IS - 4
M1 - 8895787
ER -