Abstract
Cathode material with high nickel content is a promising candidate for the future generation of Li-ion batteries (LIBs). However, severe structural degradation during cycling limits its practical use, especially for electric vehicles. Herein, AlPO4nanoparticles were synthesized and then coated onto the surface of a high-nickel layer-structured cathode via a dry coating method. The AlPO4 nanoparticles coating significantly improved the cycling stability from 69.2% to over 80% capacity retention after 140 cycles. Furthermore, the structure and chemical composition of the AlPO4-coated cathode was investigated by XRD, SEM, XPS, and STEM. Compared with the non-coated cathode, we revealed a dual protective mechanism for enhanced cycling stability, where Al doping and Li3PO4coating play synergistic roles in protecting cathode material through long-term cycling. This work demonstrates a facile and environmentally friendly approach toward improving the performance of high-nickel LIB cathodes, which can be easily scaled up for industrial applications.
Original language | English (US) |
---|---|
Article number | 050523 |
Journal | Journal of the Electrochemical Society |
Volume | 169 |
Issue number | 5 |
DOIs | |
State | Published - May 1 2022 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry