Durotaxis and extracellular matrix degradation promote the clustering of cancer cells

Mykhailo Potomkin, Oleg Kim, Yuliya Klymenko, Mark Alber, Igor S. Aranson

Research output: Contribution to journalArticlepeer-review

Abstract

Early stages of metastasis depend on the collective behavior of cancer cells and their interaction with the extracellular matrix (ECM). Cancer cell clusters are known to exhibit higher metastatic potential than single cells. To explore clustering dynamics, we developed a calibrated computational model describing how motile cancer cells biochemically and biomechanically interact with the ECM during the initial invasion phase, including ECM degradation and mechanical remodeling. The model reveals that cluster formation time, size, and shape are influenced by ECM degradation rates and cellular compliance to external stresses (durotaxis). The results align with experimental observations, demonstrating distinct cell trajectories and cluster morphologies shaped by biomechanical parameters. The simulations provide valuable insights into cancer invasion dynamics and may suggest potential therapeutic strategies targeting early-stage invasive cells.

Original languageEnglish (US)
Article number111883
JournaliScience
Volume28
Issue number3
DOIs
StatePublished - Mar 21 2025

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Durotaxis and extracellular matrix degradation promote the clustering of cancer cells'. Together they form a unique fingerprint.

Cite this