Dynamic Acousto-elastic testing

Sylvain Haupert, Guillaume Renaud, Jacques Rivière, Parisa Shokouhi

Research output: Chapter in Book/Report/Conference proceedingChapter

2 Scopus citations


Pioneering measurements of elastic nonlinearity were static methods leading to the thermodynamic diagram that shows the relations between pressure, volume, and temperature (p-v-T diagram) [1]. The dependence of the bulk elastic modulus on the pressure, i.e., a measure of nonlinear elasticity, was deduced from this diagram. In the beginning of the twentieth century, resonance spectroscopy [2, 3] or methods based on interferometry [4] were proposed to measure the elastic moduli as functions of temperature and hydrostatic pressure. Finally, with the possibility of generating an ultrasonic short pulse [5, 6], acousto-elastic testing became an alternative way to assess elastic nonlinearity. Acousto-elastic testing consists in measuring changes of the speed of sound (by the determination of the travel time of an ultrasonic short pulse) induced by a hydrostatic or uniaxial stress (or strain). For metals and polymers, the relative variation in ultrasound wave-speed is found between 10-5 and 10-4 per MPa of the applied stress. In cracked or granular media, contacts between the two lips of cracks or contacts between grains can greatly increase the variation in ultrasound wave-speed up to about 10-2 per MPa of applied stress, i.e., orders of magnitude larger than in metals and polymers [7].

Original languageEnglish (US)
Title of host publicationNonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
PublisherSpringer International Publishing
Number of pages38
ISBN (Electronic)9783319944760
ISBN (Print)9783319944746
StatePublished - Jan 1 2018

All Science Journal Classification (ASJC) codes

  • General Engineering
  • General Physics and Astronomy
  • General Materials Science


Dive into the research topics of 'Dynamic Acousto-elastic testing'. Together they form a unique fingerprint.

Cite this