Dynamic laser speckle imaging meets machine learning to enable rapid antibacterial susceptibility testing (DYRAST)

Zhiwen Liu, Aida Ebrahimi, Keren Zhou, Chen Zhou, Anjali Sapre, Jared Henry Pavlock, Ashley Weaver, Ritvik Muralidharan, Josh Noble, Taejung Chung, Jasna Kovac

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Rapid antibacterial susceptibility testing (RAST) methods are of significant importance in healthcare, as they can assist caregivers in timely administration of the correct treatments. Various RAST techniques have been reported for tracking bacterial phenotypes, including size, shape, motion, and redox state. However, they still require bulky and expensive instruments which hinder their application in resource-limited environmentsand/or utilize labeling reagents which can interfere with antibiotics and add to the total cost. Furthermore, the existing RAST methods do not address the potential gradual adaptation of bacteria to antibiotics, which can lead to a false diagnosis. In this work, we present a RAST approach by leveraging machine learning to analyze time-resolved dynamic laser speckle imaging (DLSI) results. DLSI captures the change in bacterial motion in response to antibiotic treatments. Our method accurately predicts the minimum inhibitory concentration (MIC) of ampicillin and gentamicin for a model strain of Escherichia coli (E. coli K-12) in 60 min, compared to 6 h using the currently FDA-approved phenotype-based RAST technique. In addition to ampicillin (a β-lactam) and gentamicin (an aminoglycoside), we studied the effect of ceftriaxone (a third-generation cephalosporin) on E. coli K-12. The machine learning algorithm was trained and validated using the overnight results of a gold standard antibacterial susceptibility testing method enabling prediction of MIC with a similarly high accuracy yet substantially faster.

Original languageEnglish (US)
Pages (from-to)3140-3149
Number of pages10
JournalACS Sensors
Volume5
Issue number10
DOIs
StatePublished - Oct 23 2020

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Instrumentation
  • Process Chemistry and Technology
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Dynamic laser speckle imaging meets machine learning to enable rapid antibacterial susceptibility testing (DYRAST)'. Together they form a unique fingerprint.

Cite this