Dynamic Load Analysis of Motion Converter Ball Bearings in a Pericyclic Transmission

Nick Weinzapfel, Nathan Bolander, Tanmay Mathur, Hans DeSmidt, Edward Smith

Research output: Contribution to conferencePaperpeer-review

2 Scopus citations

Abstract

Performance of ball bearings in the motion converter subassembly of an internally driven, single-speed, torque-split, twin configuration pericyclic transmission prototype is evaluated to extend the analytical knowledge base on this innovative transmission concept. A dynamic model of the transmission is developed with high-fidelity models of the installed rolling element bearings to determine their reactions. Attention is focused on the pair of ball bearings supporting the motion converter subassembly which are subjected to a complex combination of loads, including radial and axial forces, moments, carrier motion, and possibly internal preload. Then the influence of internal axial clearance and preload on the behavior of the rolling elements is analyzed with a fully dynamic ball bearing model. Provisions to consider the carrier motion and a robust integration algorithm for component orientations are presented. Finally, a microstructure-based fatigue life simulation of the critical bearing component is performed to demonstrate the effect of clearance/preload on bearing reliability.

Original languageEnglish (US)
StatePublished - 2022
Event78th Vertical Flight Society Annual Forum and Technology Display, FORUM 2022 - Fort Worth, United States
Duration: May 10 2022May 12 2022

Conference

Conference78th Vertical Flight Society Annual Forum and Technology Display, FORUM 2022
Country/TerritoryUnited States
CityFort Worth
Period5/10/225/12/22

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Dynamic Load Analysis of Motion Converter Ball Bearings in a Pericyclic Transmission'. Together they form a unique fingerprint.

Cite this