TY - GEN
T1 - Dynamic modeling and analysis of an origami-inspired optical shield for the starshade spacecraft
AU - Bowen, Landen
AU - Trease, Brian
AU - Frecker, Mary
AU - Simpson, Timothy
N1 - Funding Information:
We gratefully acknowledge the support of the National Science Foundation EFRI grant number 1240459 and the Air Force Office of Scientific Research. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or NASA's Jet Propulsion Laboratory.
PY - 2016
Y1 - 2016
N2 - The Starshade is a future exoplanet discovery mission consisting of a satellite and a 34 meter diameter starshade used to block the light of a star of interest, enhancing visualization of the orbiting planets. The starshade itself is composed of a number of 7 meter long petals surrounding a 20 meter diameter optical shield. A critical design requirement of the optical shield is stowage in a 3 meter diameter area during launch. Origami has been investigated as a means of collapsing the optical shield, specifically a family of action origami models known as "flashers." In this paper a dynamic model of an optical shield design candidate based on a flasher pattern is created in Adams 2014. As these patterns can have many parts and joints, a method for the automatic creation of dynamic models using information about the geometry of the crease pattern is utilized. As the fabricated optical shield panels will be somewhat flexible, each quadrilateral panel is modeled as two rigid triangles connected with a joint. The effect of joint stiffness on the forces and torques developed during deployment is investigated. It is found that the optical shield design is rigid foldable if the panel flexibility is taken into account by additional joints, which are found to bend from 10°-40°. Joint forces are predicted over the deployment, and maximum and average joint forces are tabulated. These and other insights gained from the dynamic model can help guide future Starshade design decisions, and similar analyses can be performed for other origami-inspired deployable structures.
AB - The Starshade is a future exoplanet discovery mission consisting of a satellite and a 34 meter diameter starshade used to block the light of a star of interest, enhancing visualization of the orbiting planets. The starshade itself is composed of a number of 7 meter long petals surrounding a 20 meter diameter optical shield. A critical design requirement of the optical shield is stowage in a 3 meter diameter area during launch. Origami has been investigated as a means of collapsing the optical shield, specifically a family of action origami models known as "flashers." In this paper a dynamic model of an optical shield design candidate based on a flasher pattern is created in Adams 2014. As these patterns can have many parts and joints, a method for the automatic creation of dynamic models using information about the geometry of the crease pattern is utilized. As the fabricated optical shield panels will be somewhat flexible, each quadrilateral panel is modeled as two rigid triangles connected with a joint. The effect of joint stiffness on the forces and torques developed during deployment is investigated. It is found that the optical shield design is rigid foldable if the panel flexibility is taken into account by additional joints, which are found to bend from 10°-40°. Joint forces are predicted over the deployment, and maximum and average joint forces are tabulated. These and other insights gained from the dynamic model can help guide future Starshade design decisions, and similar analyses can be performed for other origami-inspired deployable structures.
UR - http://www.scopus.com/inward/record.url?scp=85013984152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013984152&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2016-9172
DO - 10.1115/SMASIS2016-9172
M3 - Conference contribution
AN - SCOPUS:85013984152
T3 - ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
BT - Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
PB - American Society of Mechanical Engineers
T2 - ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
Y2 - 28 September 2016 through 30 September 2016
ER -