TY - GEN
T1 - Dynamic modeling of trust in human-machine interactions
AU - Akash, Kumar
AU - Hu, Wan Lin
AU - Reid, Tahira
AU - Jain, Neera
N1 - Publisher Copyright:
© 2017 American Automatic Control Council (AACC).
PY - 2017/6/29
Y1 - 2017/6/29
N2 - In an increasingly automated world, trust between humans and autonomous systems is critical for successful integration of these systems into our daily lives. In particular, for autonomous systems to work cooperatively with humans, they must be able to sense and respond to the trust of the human. This inherently requires a control-oriented model of dynamic human trust behavior. In this paper, we describe a gray-box modeling approach for a linear third-order model that captures the dynamic variations of human trust in an obstacle detection sensor. The model is parameterized based on data collected from 581 human subjects, and the goodness of fit is approximately 80% for a general population. We also discuss the effect of demographics, such as national culture and gender, on trust behavior by re-parameterizing our model for subpopulations of data. These demographic-based models can be used to help autonomous systems further predict variations in human trust dynamics.
AB - In an increasingly automated world, trust between humans and autonomous systems is critical for successful integration of these systems into our daily lives. In particular, for autonomous systems to work cooperatively with humans, they must be able to sense and respond to the trust of the human. This inherently requires a control-oriented model of dynamic human trust behavior. In this paper, we describe a gray-box modeling approach for a linear third-order model that captures the dynamic variations of human trust in an obstacle detection sensor. The model is parameterized based on data collected from 581 human subjects, and the goodness of fit is approximately 80% for a general population. We also discuss the effect of demographics, such as national culture and gender, on trust behavior by re-parameterizing our model for subpopulations of data. These demographic-based models can be used to help autonomous systems further predict variations in human trust dynamics.
UR - http://www.scopus.com/inward/record.url?scp=85027030726&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027030726&partnerID=8YFLogxK
U2 - 10.23919/ACC.2017.7963172
DO - 10.23919/ACC.2017.7963172
M3 - Conference contribution
AN - SCOPUS:85027030726
T3 - Proceedings of the American Control Conference
SP - 1542
EP - 1548
BT - 2017 American Control Conference, ACC 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 American Control Conference, ACC 2017
Y2 - 24 May 2017 through 26 May 2017
ER -