Dynamic models incorporating individual heterogeneity: Utility evolution in conjoint analysis

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

It has been shown in the behavioral decision making, marketing research, and psychometric literature that the structure underlying preferences can change during the administration of repeated measurements (e.g., conjoint analysis) and data collection because of effects from learning, fatigue, boredom, and so on. In this research note, we propose a new class of hierarchical dynamic Bayesian models for capturing such dynamic effects in conjoint applications, which extend the standard hierarchical Bayesian random effects and existing dynamic Bayesian models by allowing for individual-level heterogeneity around an aggregate dynamic trend. Using simulated conjoint data, we explore the performance of these new dynamic models, incorporating individual-level heterogeneity across a number of possible types of dynamic effects, and demonstrate the derived benefits versus static models. In addition, we introduce the idea of an unbiased dynamic estimate, and demonstrate that using a counterbalanced design is important from an estimation perspective when parameter dynamics are present.

Original languageEnglish (US)
Pages (from-to)285-293
Number of pages9
JournalMarketing Science
Volume24
Issue number2
DOIs
StatePublished - Mar 2005

All Science Journal Classification (ASJC) codes

  • Business and International Management
  • Marketing

Fingerprint

Dive into the research topics of 'Dynamic models incorporating individual heterogeneity: Utility evolution in conjoint analysis'. Together they form a unique fingerprint.

Cite this