TY - JOUR
T1 - Dynamic Partitioning of Surfactants into Nonequilibrium Emulsion Droplets
AU - Balaj, Rebecca V.
AU - Xue, Wangyang
AU - Bayati, Parvin
AU - Mallory, Stewart
AU - Zarzar, Lauren D.
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024/9/25
Y1 - 2024/9/25
N2 - Characterizing the propensity of molecules to distribute between fluid phases is key to describing chemical concentrations in heterogeneous mixtures and the corresponding physiochemical properties of a system. Typically, partitioning is studied under equilibrium conditions. However, some mixtures form a single phase at equilibrium but exist in multiple phases when out-of-equilibrium, such as oil-in-water emulsion droplets stabilized by surfactants. Such droplets persist for extended times but ultimately disappear due to droplet dissolution and micellar solubilization. Consequently, equilibrium properties like oil-water partition coefficients may not accurately describe out-of-equilibrium droplets. This study investigates the partitioning of nonionic surfactants between shrinking microscale oil droplets and water under nonequilibrium conditions. Quantitative mass spectrometry is used to analyze the composition of individual microdroplets over time under conditions of varying surfactant composition, concentrations, and oil molecular structures. Within minutes, nonionic surfactants partition into oil droplets, reaching a nonequilibrium steady-state concentration that can be over an order of magnitude higher than that in the aqueous phase. As the droplets solubilize over hours, the surfactants are released back into water, leading to transiently high surfactant concentrations near the droplet-water interface and the formation of a microemulsion phase with a low interfacial tension. Introducing ionic surfactants that form mixed micelles with nonionic surfactants reduces partitioning. Based on this observation, stimuli-responsive ionic surfactants are used to modulate the nonionic surfactant partitioning and trigger reversible phase separation and mixing inside binary oil droplets. This study reveals generalizable nonequilibrium states and conditions experienced by solubilizing oil droplets that influence emulsion properties.
AB - Characterizing the propensity of molecules to distribute between fluid phases is key to describing chemical concentrations in heterogeneous mixtures and the corresponding physiochemical properties of a system. Typically, partitioning is studied under equilibrium conditions. However, some mixtures form a single phase at equilibrium but exist in multiple phases when out-of-equilibrium, such as oil-in-water emulsion droplets stabilized by surfactants. Such droplets persist for extended times but ultimately disappear due to droplet dissolution and micellar solubilization. Consequently, equilibrium properties like oil-water partition coefficients may not accurately describe out-of-equilibrium droplets. This study investigates the partitioning of nonionic surfactants between shrinking microscale oil droplets and water under nonequilibrium conditions. Quantitative mass spectrometry is used to analyze the composition of individual microdroplets over time under conditions of varying surfactant composition, concentrations, and oil molecular structures. Within minutes, nonionic surfactants partition into oil droplets, reaching a nonequilibrium steady-state concentration that can be over an order of magnitude higher than that in the aqueous phase. As the droplets solubilize over hours, the surfactants are released back into water, leading to transiently high surfactant concentrations near the droplet-water interface and the formation of a microemulsion phase with a low interfacial tension. Introducing ionic surfactants that form mixed micelles with nonionic surfactants reduces partitioning. Based on this observation, stimuli-responsive ionic surfactants are used to modulate the nonionic surfactant partitioning and trigger reversible phase separation and mixing inside binary oil droplets. This study reveals generalizable nonequilibrium states and conditions experienced by solubilizing oil droplets that influence emulsion properties.
UR - http://www.scopus.com/inward/record.url?scp=85205053066&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85205053066&partnerID=8YFLogxK
U2 - 10.1021/jacs.4c08917
DO - 10.1021/jacs.4c08917
M3 - Article
C2 - 39255056
AN - SCOPUS:85205053066
SN - 0002-7863
VL - 146
SP - 26340
EP - 26350
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 38
ER -