TY - JOUR
T1 - Dynamic shear strength of a needle-punched GCL for monotonic loading
AU - Fox, Patrick J.
AU - Sura, Joseph M.
AU - Nye, Christopher J.
N1 - Publisher Copyright:
© 2015 American Society of Civil Engineers.
PY - 2015/7/1
Y1 - 2015/7/1
N2 - This paper presents an experimental investigation of the dynamic internal shear strength of a hydrated woven/nonwoven needlepunched geosynthetic clay liner (GCL) for monotonic (i.e., single direction) loading conditions. Displacement-controlled shear tests were conducted using a large direct shear machine for four normal stress levels ranging from 141 to 1,382 kPa and seven shear displacement rates R ranging from 0.1 to 30,000 mm=min. For each normal stress, peak shear strength first increased and then decreased with increasing displacement rate. Maximum values of peak strength occurred for R = 100-10,000 mm=min and were 16-23% higher than corresponding static values measured at R = 0.1 mm=min. For each normal stress, residual shear strength first decreased and then increased with increasing displacement rate, with minimum values occurring at R = 1 mm=min. On a relative basis, residual strengths show greater dependence on displacement rate than peak strengths. The standard displacement rate for static shear tests of hydrated GCLs (0.1 mm=min) generally yielded conservative values of peak shear strength but unconservative values of residual shear strength, especially for higher normal stress levels. The GCL experienced large post-peak strength reduction for all test conditions.
AB - This paper presents an experimental investigation of the dynamic internal shear strength of a hydrated woven/nonwoven needlepunched geosynthetic clay liner (GCL) for monotonic (i.e., single direction) loading conditions. Displacement-controlled shear tests were conducted using a large direct shear machine for four normal stress levels ranging from 141 to 1,382 kPa and seven shear displacement rates R ranging from 0.1 to 30,000 mm=min. For each normal stress, peak shear strength first increased and then decreased with increasing displacement rate. Maximum values of peak strength occurred for R = 100-10,000 mm=min and were 16-23% higher than corresponding static values measured at R = 0.1 mm=min. For each normal stress, residual shear strength first decreased and then increased with increasing displacement rate, with minimum values occurring at R = 1 mm=min. On a relative basis, residual strengths show greater dependence on displacement rate than peak strengths. The standard displacement rate for static shear tests of hydrated GCLs (0.1 mm=min) generally yielded conservative values of peak shear strength but unconservative values of residual shear strength, especially for higher normal stress levels. The GCL experienced large post-peak strength reduction for all test conditions.
UR - http://www.scopus.com/inward/record.url?scp=84925350168&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84925350168&partnerID=8YFLogxK
U2 - 10.1061/(ASCE)GT.1943-5606.0001304
DO - 10.1061/(ASCE)GT.1943-5606.0001304
M3 - Article
AN - SCOPUS:84925350168
SN - 1090-0241
VL - 141
JO - Journal of Geotechnical and Geoenvironmental Engineering
JF - Journal of Geotechnical and Geoenvironmental Engineering
IS - 7
M1 - 04015025
ER -