Dynamical properties of AlN nanostructures and heterogeneous interfaces predicted using COMB potentials

Kamal Choudhary, Tao Liang, Kiran Mathew, Benjamin Revard, Aleksandr Chernatynskiy, Simon R. Phillpot, Richard G. Hennig, Susan B. Sinnott

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

A new empirical variable charge potential has been developed for AlN within the third-generation charge optimized many-body (COMB3) potential framework. The potential is able to reproduce the fundamental physical properties of AlN, including cohesive energy, elastic constants, defect formation energies, surface energies and phonon properties of AlN obtained from experiments and first-principles calculations. The thermodynamic properties of the Al(1 1 1)-AlN (101¯0) and Al2O3(0 0 0 1)-AlN (101¯0) interfaces and the tensile response of AlN nanowires and nanotubes are investigated in classical molecular dynamical (MD) simulations using this COMB3 potential. The results demonstrate that the potential is well suited to model heterogeneous materials in the Al-O-N system. Most importantly, the fully transferrable potential parameters can be seamlessly coupled with existing COMB3 parameters of other elements to enable MD simulations for an even wider range of heterogeneous materials systems.

Original languageEnglish (US)
Pages (from-to)80-87
Number of pages8
JournalComputational Materials Science
Volume113
DOIs
StatePublished - Feb 15 2016

All Science Journal Classification (ASJC) codes

  • General Computer Science
  • General Chemistry
  • General Materials Science
  • Mechanics of Materials
  • General Physics and Astronomy
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Dynamical properties of AlN nanostructures and heterogeneous interfaces predicted using COMB potentials'. Together they form a unique fingerprint.

Cite this