Dynamically Optimized Unstructured Grid (DOUG) for Analog Ensemble of numerical weather predictions using evolutionary algorithms

Weiming Hu, G. Cervone

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


The Analog Ensemble is a statistical technique that generates probabilistic forecasts using a current deterministic prediction, a set of historical predictions, and the associated observations. It generates ensemble forecasts by first identifying the most similar past predictions to the current one, and then summarizing the corresponding observations. This is a computationally efficient solution for ensemble modeling because it does not require multiple numerical weather prediction simulations, but a single model realization. Despite this intrinsic computational efficiency, the required computation can grow very large because atmospheric models are routinely run with increasing resolutions. For example, the North American Mesoscale forecast system contains over 262 792 grid points to generate a 12 km prediction. The North American Mesoscale model generally uses a structured grid to represent the domain, despite the fact that certain physical changes occur non-uniformly across space and time. For example, temperature changes tend to occur more rapidly in mountains than plains. An evolutionary algorithm is proposed to dynamically and automatically learn the optimal unstructured grid pattern. This iterative evolutionary algorithm is guided by Darwinian evolutionary rule generation and instantiation to identify grid vertices. Analog computations are performed only at vertices. Therefore, minimizing the number of vertices and identifying their locations are paramount to optimizing the available computational resources, minimizing queue time, and ultimately achieving better results. The optimal unstructured grid is then reused to guide the predictions for a variety of applications like temperature and wind speed.

Original languageEnglish (US)
Article number104299
JournalComputers and Geosciences
StatePublished - Dec 2019

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Computers in Earth Sciences


Dive into the research topics of 'Dynamically Optimized Unstructured Grid (DOUG) for Analog Ensemble of numerical weather predictions using evolutionary algorithms'. Together they form a unique fingerprint.

Cite this