Abstract
In this paper, the north-south variability of westerly jet anomalies during the two phases of the North Atlantic Oscillation (NAO) is examined in a theoretical model. It is found that the north-south variability of the zonal mean westerly anomaly results from the interaction between the eddy-driven anomalous stationary waves with a dipole meridional structure (NAO anomalies) and topographically induced climatological stationary waves with a monopole structure, which is dependent upon the phase of the NAO. The westerly jet anomaly tends to shift northward during the positive NAO phase but southward during the negative phase. Synoptic-scale eddies tend to maintain westerly jet anomalies through the excitation of NAO anomalies, but the climatological stationary wave and its position relative to the eddy-driven anomalous stationary wave appear to dominate the north-south shift of westerly jet anomalies. On the other hand, it is shown that when the climatological stationary wave ridge is located downstream of the eddy-driven anomalous stationary wave, the storm track modulated by the NAO pattern splits into two branches for the negative phase, in which the northern branch is generally stronger than the southern one. However, the southern one can be dominant as the relative position between anomalous and climatological stationary waves is within a moderate range. The storm track for the positive phase tends to drift northeastward when there is a phase difference between the NAO anomaly and climatological stationary wave ridge downstream. Thus, it appears that the relationship between the NAO jets and storm tracks can be clearly seen from the present theoretical model.
Original language | English (US) |
---|---|
Pages (from-to) | 3232-3248 |
Number of pages | 17 |
Journal | Journal of the Atmospheric Sciences |
Volume | 64 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2007 |
All Science Journal Classification (ASJC) codes
- Atmospheric Science