Dynamics of Electron Injection in SnO2/TiO2 Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells

Nicholas S. McCool, John R. Swierk, Coleen T. Nemes, Charles A. Schmuttenmaer, Thomas E. Mallouk

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) rely on photoinduced charge separation at a dye/semiconductor interface to supply electrons and holes for water splitting. To improve the efficiency of charge separation and reduce charge recombination in these devices, it is possible to use core/shell structures in which photoinduced electron transfer occurs stepwise through a series of progressively more positive acceptor states. Here, we use steady-state emission studies and time-resolved terahertz spectroscopy to follow the dynamics of electron injection from a photoexcited ruthenium polypyridyl dye as a function of the TiO2 shell thickness on SnO2 nanoparticles. Electron injection proceeds directly into the SnO2 core when the thickness of the TiO2 shell is less than 5 Å. For thicker shells, electrons are injected into the TiO2 shell and trapped, and are then released into the SnO2 core on a time scale of hundreds of picoseconds. As the TiO2 shell increases in thickness, the probability of electron trapping in nonmobile states within the shell increases. Conduction band electrons in the TiO2 shell and the SnO2 core can be differentiated on the basis of their mobility. These observations help explain the observation of an optimum shell thickness for core/shell water-splitting electrodes.

Original languageEnglish (US)
Pages (from-to)2930-2934
Number of pages5
JournalJournal of Physical Chemistry Letters
Volume7
Issue number15
DOIs
StatePublished - Aug 4 2016

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Dynamics of Electron Injection in SnO2/TiO2 Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells'. Together they form a unique fingerprint.

Cite this