Abstract
The dynamics of curved vortex filaments is studied analytically and numerically in the framework of a three-dimensional complex Ginzburg-Landau equation (CGLE). It is shown that a straight vortex line is unstable with respect to spontaneous stretching and bending in a substantial range of parameters of the CGLE, resulting in formation of persistent entangled vortex configurations. The boundary of the three-dimensional instability in parameter space is determined. Near the stability boundary, the supercritical saturation of the instability is found, resulting in the formation of stable helicoidal vortices.
Original language | English (US) |
---|---|
Pages (from-to) | 5276-5286 |
Number of pages | 11 |
Journal | Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics |
Volume | 57 |
Issue number | 5 |
DOIs | |
State | Published - 1998 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics