TY - JOUR
T1 - E4DVar
T2 - Coupling an ensemble kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model
AU - Zhang, Meng
AU - Zhang, Fuqing
PY - 2012/2
Y1 - 2012/2
N2 - Ahybrid data assimilation approach that couples the ensemble Kalman filter (EnKF) and four-dimensional variational (4DVar) methods is implemented for the first time in a limited-area weather prediction model. In this coupled system, denoted E4DVar, the EnKF and 4DVar systems run in parallel while feeding into each other. The multivariate, flow-dependent background error covariance estimated from the EnKF ensemble is used in the 4DVar minimization and the ensemble mean in the EnKF analysis is replaced by the 4DVar analysis, while updating the analysis perturbations for the next cycle of ensemble forecasts with the EnKF. Therefore, the E4DVar can obtain flow-dependent information from both the explicit covariance matrix derived from ensemble forecasts, as well as implicitly from the 4DVar trajectory. The performance of an E4DVar system is compared with the uncoupled 4DVar and EnKF for a limited-area model by assimilating various conventional observations over the contiguous United States for June 2003. After verifying the forecasts from each analysis against standard sounding observations, it is found that the E4DVar substantially outperforms both the EnKF and 4DVar during this active summer month, which featured several episodes of severe convective weather. On average, the forecasts produced from E4DVar analyses have considerably smaller errors than both of the stand-alone EnKF and 4DVar systems for forecast lead times up to 60 h.
AB - Ahybrid data assimilation approach that couples the ensemble Kalman filter (EnKF) and four-dimensional variational (4DVar) methods is implemented for the first time in a limited-area weather prediction model. In this coupled system, denoted E4DVar, the EnKF and 4DVar systems run in parallel while feeding into each other. The multivariate, flow-dependent background error covariance estimated from the EnKF ensemble is used in the 4DVar minimization and the ensemble mean in the EnKF analysis is replaced by the 4DVar analysis, while updating the analysis perturbations for the next cycle of ensemble forecasts with the EnKF. Therefore, the E4DVar can obtain flow-dependent information from both the explicit covariance matrix derived from ensemble forecasts, as well as implicitly from the 4DVar trajectory. The performance of an E4DVar system is compared with the uncoupled 4DVar and EnKF for a limited-area model by assimilating various conventional observations over the contiguous United States for June 2003. After verifying the forecasts from each analysis against standard sounding observations, it is found that the E4DVar substantially outperforms both the EnKF and 4DVar during this active summer month, which featured several episodes of severe convective weather. On average, the forecasts produced from E4DVar analyses have considerably smaller errors than both of the stand-alone EnKF and 4DVar systems for forecast lead times up to 60 h.
UR - http://www.scopus.com/inward/record.url?scp=84863173809&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863173809&partnerID=8YFLogxK
U2 - 10.1175/MWR-D-11-00023.1
DO - 10.1175/MWR-D-11-00023.1
M3 - Article
AN - SCOPUS:84863173809
SN - 0027-0644
VL - 140
SP - 587
EP - 600
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 2
ER -