Early root phenotyping in sweetpotato (Ipomoea batatas L.) uncovers insights into root system architecture variability

Research output: Contribution to journalArticlepeer-review

Abstract

Background. We developed a novel, non-destructive, expandable, ebb and flow soilless phenotyping system to deliver a capable way to study early root system architectural traits in stem-derived adventitious roots of sweetpotato (Ipomoea batatas L.). The platform was designed to accommodate up to 12 stems in a relatively small area for root screening. This platform was designed with inexpensive materials and equipped with an automatic watering system. Methods. To test this platform, we designed a screening experiment for root traits using two contrasting sweetpotato genotypes, ‘Covington’ and ‘NC10-275’. We monitored and imaged root growth, architecture, and branching patterns every five days up to 20 days. Results. We observed significant differences in both architectural and morphological root traits for both genotypes tested. After 10 days, root length, surface root area, and root volume were higher in ‘NC10-275’ compared to ‘Covington’. However, average root diameter and root branching density were higher in ‘Covington’. Conclusion. These results validated the effective and efficient use of this novel root phenotyping platforming for screening root traits in early stem-derived adventitious roots. This platform allowed for monitoring and 2D imaging of root growth over time with minimal disturbance and no destructive root sampling. This platform can be easily tailored for abiotic stress experiments, and permit root growth mapping and temporal and dynamic root measurements of primary and secondary adventitious roots. This phenotyping platform can be a suitable tool for examining root system architecture and traits of clonally propagated material for a large set of replicates in a relatively small space.

Original languageEnglish (US)
Article numbere15448
JournalPeerJ
Volume11
DOIs
StatePublished - 2023

All Science Journal Classification (ASJC) codes

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Cite this