TY - JOUR
T1 - Ectopic expression of S-RNase of Petunia inflata in pollen results in its sequestration and non-cytotoxic function
AU - Meng, Xiaoying
AU - Hua, Zhihua
AU - Wang, Ning
AU - Fields, Allison M.
AU - Dowd, Peter E.
AU - Kao, Teh hui
N1 - Funding Information:
Acknowledgments We thank Simon Gilroy and Richard Cyr for advice and suggestions on confocal experiments. This work was supported by National Science Foundation grants IOB 05-43201 and IOS 08-43195 to T.-h.K.
PY - 2009/11
Y1 - 2009/11
N2 - The specificity of S-RNase-based self-incompatibility (SI) is controlled by two S-locus genes, the pistil S-RNase gene and the pollen S-locus-F-box gene. S-RNase is synthesized in the transmitting cell; its signal peptide is cleaved off during secretion into the transmitting tract; and the mature "S-RNase", the subject of this study, is taken up by growing pollen tubes via an as-yet unknown mechanism. Upon uptake, S-RNase is sequestered in a vacuolar compartment in both non-self (compatible) and self (incompatible) pollen tubes, and the subsequent disruption of this compartment in incompatible pollen tubes correlates with the onset of the SI response. How the S-RNase-containing compartment is specifically disrupted in incompatible pollen tubes, however, is unknown. Here, we circumvented the uptake step of S-RNase by directly expressing S2-RNase, S3-RNase and non-glycosylated S3-RNase of Petunia inflata, with green fluorescent protein (GFP) fused at the C-terminus of each protein, in self (incompatible) and non-self (compatible) pollen of transgenic plants. We found that none of these ectopically expressed S-RNases affected the viability or the SI behavior of their self or non-self-pollen/pollen tubes. Based on GFP fluorescence of in vitro-germinated pollen tubes, all were sequestered in both self and non-self-pollen tubes. Moreover, the S-RNase-containing compartment was dynamic in living pollen tubes, with movement dependent on the actin-myosin-based molecular motor system. All these results suggest that glycosylation is not required for sequestration of S-RNase expressed in pollen tubes, and that the cytosol of pollen is the site of the cytotoxic action of S-RNase in SI.
AB - The specificity of S-RNase-based self-incompatibility (SI) is controlled by two S-locus genes, the pistil S-RNase gene and the pollen S-locus-F-box gene. S-RNase is synthesized in the transmitting cell; its signal peptide is cleaved off during secretion into the transmitting tract; and the mature "S-RNase", the subject of this study, is taken up by growing pollen tubes via an as-yet unknown mechanism. Upon uptake, S-RNase is sequestered in a vacuolar compartment in both non-self (compatible) and self (incompatible) pollen tubes, and the subsequent disruption of this compartment in incompatible pollen tubes correlates with the onset of the SI response. How the S-RNase-containing compartment is specifically disrupted in incompatible pollen tubes, however, is unknown. Here, we circumvented the uptake step of S-RNase by directly expressing S2-RNase, S3-RNase and non-glycosylated S3-RNase of Petunia inflata, with green fluorescent protein (GFP) fused at the C-terminus of each protein, in self (incompatible) and non-self (compatible) pollen of transgenic plants. We found that none of these ectopically expressed S-RNases affected the viability or the SI behavior of their self or non-self-pollen/pollen tubes. Based on GFP fluorescence of in vitro-germinated pollen tubes, all were sequestered in both self and non-self-pollen tubes. Moreover, the S-RNase-containing compartment was dynamic in living pollen tubes, with movement dependent on the actin-myosin-based molecular motor system. All these results suggest that glycosylation is not required for sequestration of S-RNase expressed in pollen tubes, and that the cytosol of pollen is the site of the cytotoxic action of S-RNase in SI.
UR - http://www.scopus.com/inward/record.url?scp=70450066919&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70450066919&partnerID=8YFLogxK
U2 - 10.1007/s00497-009-0114-3
DO - 10.1007/s00497-009-0114-3
M3 - Article
C2 - 20033448
AN - SCOPUS:70450066919
SN - 0934-0882
VL - 22
SP - 263
EP - 275
JO - Sexual Plant Reproduction
JF - Sexual Plant Reproduction
IS - 4
ER -