EdgePC: Efficient Deep Learning Analytics for Point Clouds on Edge Devices

Ziyu Ying, Yingtian Zhang, Sandeepa Bhuyan, Mahmut T. Kandemir, Yan Kang, Chita R. Das

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recently, point cloud (PC) has gained popularity in modeling various 3D objects (including both synthetic and real-life) and has been extensively utilized in a wide range of applications such as AR/VR, 3D reconstruction, and autonomous driving. For such applications, it is critical to analyze/understand the surrounding scenes properly. To achieve this, deep learning based methods (e.g., convolutional neural networks (CNNs)) have been widely employed for higher accuracy. Unlike the deep learning on conventional 2D images/videos, where the feature computation (matrix multiplication) is the major bottleneck, in point cloud-based CNNs, the sample and neighbor search stages are the primary bottlenecks, and collectively contribute to 54% (up to 80%) of the overall execution latency on a typical edge device. While prior efforts have attempted to solve this issue by designing custom ASICs or pipelining the neighbor search with other stages, to our knowledge, none of them has tried to “structurize” the unstructured PC data for improving computational efficiency. In this paper, we first explore the opportunities of structurizing PC data using Morton code (which is originally designed to map data from a high dimensional space to one dimension, while preserving spatial locality) and observe that there is a huge scope to “skip” the sample and neighbor search computation by operating on the “structurized” PC data. Based on this, we propose two approximation techniques for the sampling and neighbor search stages. We implemented our proposals on an NVIDIA Jetson AGX Xavier edge GPU board. The evaluation results collected on six different workloads show that our design can accelerate the sample and neighbor search stages by 3.68× (up to 5.21×) with minimal impact on inference accuracy. This acceleration in turn results in 1.55× speedup in the end-to-end execution latency and saves 33% of energy expenditure.

Original languageEnglish (US)
Title of host publicationISCA 2023 - Proceedings of the 2023 50th Annual International Symposium on Computer Architecture
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1093-1106
Number of pages14
ISBN (Electronic)9798400700958
DOIs
StatePublished - Jun 17 2023
Event50th Annual International Symposium on Computer Architecture, ISCA 2023 - Orlando, United States
Duration: Jun 17 2023Jun 21 2023

Publication series

NameProceedings - International Symposium on Computer Architecture
ISSN (Print)1063-6897

Conference

Conference50th Annual International Symposium on Computer Architecture, ISCA 2023
Country/TerritoryUnited States
CityOrlando
Period6/17/236/21/23

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture

Cite this