EEC: LEARNING TO ENCODE AND REGENERATE IMAGES FOR CONTINUAL LEARNING

Ali Ayub, Alan R. Wagner

Research output: Contribution to conferencePaperpeer-review

28 Scopus citations

Abstract

The two main impediments to continual learning are catastrophic forgetting and memory limitations on the storage of data. To cope with these challenges, we propose a novel, cognitively-inspired approach which trains autoencoders with Neural Style Transfer to encode and store images. During training on a new task, reconstructed images from encoded episodes are replayed in order to avoid catastrophic forgetting. The loss function for the reconstructed images is weighted to reduce its effect during classifier training to cope with image degradation. When the system runs out of memory the encoded episodes are converted into centroids and covariance matrices, which are used to generate pseudo-images during classifier training, keeping classifier performance stable while using less memory. Our approach increases classification accuracy by 13-17% over state-of-the-art methods on benchmark datasets, while requiring 78% less storage space.

Original languageEnglish (US)
StatePublished - 2021
Event9th International Conference on Learning Representations, ICLR 2021 - Virtual, Online
Duration: May 3 2021May 7 2021

Conference

Conference9th International Conference on Learning Representations, ICLR 2021
CityVirtual, Online
Period5/3/215/7/21

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'EEC: LEARNING TO ENCODE AND REGENERATE IMAGES FOR CONTINUAL LEARNING'. Together they form a unique fingerprint.

Cite this