TY - JOUR
T1 - Effect of 1-amino-oxy-3-aminopropane on polyamine metabolism and growth of L1210 cells
AU - Poulin, R.
AU - Secrist, J. A.
AU - Pegg, A. E.
PY - 1989
Y1 - 1989
N2 - 1-Amino-oxy-3-aminopropane (AOAP) was reported to inhibit several mammalian polyamine-biosynthetic enzymes in vitro, including ornithine decarboxylase (ODC) and S-adenosylmethionine, decarboxylase (AdoMetDC)[Khomutov, Hyvonen, Karvonen, Kauppinen, Paalanen, Paulin, Eloranta, Pajula, Andersson and Poso (1985) Biochem. Biophys. Res. Commun. 130, 596-602]. In order to clarify its mechanism of action in intact cells, the inhibitory properties of AOAP on the growth and polyamine metabolism of L1210 cells were compared with those seen in a variant subline (D-R cells) which overproduces ODC. As little as 20 μM-AOAP completely blocked proliferation of L1210 cells, and this effect was reversed by the concomitant addition of exogenous putrescine or spermidine. Growth of D-R cells was not affected by AOAP at concentrations up to 0.5 mM. There was no difference in the uptake of AOAP between the L1210 and the D-R cells. Exposure of L1210 or D-R cells to AOAP greatly decreased ODC activity in undialysed cell extracts, but did not decrease AdoMetDC. Activities of both enzymes were increased several-fold by AOAP treatment when activity was measured in dialysed extracts. Treatment with AOAP depleted intracellular putrescine and spermidine contents of L1210 cells, while inducing a massive accumulation of decarboxylated AdoMet. The 8-fold higher putrescine pool present in untreated D-R cells was depleted in a dose-dependent manner by AOAP, but a significant decrease in spermidine and accumulation of decarboxylated AdoMet required 10 times higher drug concentrations, and the changes were much less dramatic than in L1210 cells. These results indicate that in L1210 cells AOAP behaves primarily as a reversible inhibitor of ODC.
AB - 1-Amino-oxy-3-aminopropane (AOAP) was reported to inhibit several mammalian polyamine-biosynthetic enzymes in vitro, including ornithine decarboxylase (ODC) and S-adenosylmethionine, decarboxylase (AdoMetDC)[Khomutov, Hyvonen, Karvonen, Kauppinen, Paalanen, Paulin, Eloranta, Pajula, Andersson and Poso (1985) Biochem. Biophys. Res. Commun. 130, 596-602]. In order to clarify its mechanism of action in intact cells, the inhibitory properties of AOAP on the growth and polyamine metabolism of L1210 cells were compared with those seen in a variant subline (D-R cells) which overproduces ODC. As little as 20 μM-AOAP completely blocked proliferation of L1210 cells, and this effect was reversed by the concomitant addition of exogenous putrescine or spermidine. Growth of D-R cells was not affected by AOAP at concentrations up to 0.5 mM. There was no difference in the uptake of AOAP between the L1210 and the D-R cells. Exposure of L1210 or D-R cells to AOAP greatly decreased ODC activity in undialysed cell extracts, but did not decrease AdoMetDC. Activities of both enzymes were increased several-fold by AOAP treatment when activity was measured in dialysed extracts. Treatment with AOAP depleted intracellular putrescine and spermidine contents of L1210 cells, while inducing a massive accumulation of decarboxylated AdoMet. The 8-fold higher putrescine pool present in untreated D-R cells was depleted in a dose-dependent manner by AOAP, but a significant decrease in spermidine and accumulation of decarboxylated AdoMet required 10 times higher drug concentrations, and the changes were much less dramatic than in L1210 cells. These results indicate that in L1210 cells AOAP behaves primarily as a reversible inhibitor of ODC.
UR - http://www.scopus.com/inward/record.url?scp=0024456630&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024456630&partnerID=8YFLogxK
U2 - 10.1042/bj2630215
DO - 10.1042/bj2630215
M3 - Article
C2 - 2513802
AN - SCOPUS:0024456630
SN - 0264-6021
VL - 263
SP - 215
EP - 221
JO - Biochemical Journal
JF - Biochemical Journal
IS - 1
ER -