TY - JOUR
T1 - Effect of capacitive deionization on disinfection by-product precursors
AU - Liu, Danyang
AU - Wang, Xiaomao
AU - Xie, Yuefeng F.
AU - Tang, Hao L.
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/10/15
Y1 - 2016/10/15
N2 - Formation of brominated disinfection by-products (DBPs) from bromide and natural organic matter upon chlorination imposes health risks to drinking water users. In this study, capacitive deionization (CDI) was evaluated as a potential process for DBP precursor removal. Synthetic humic acid and bromide containing saline water was used as model water prior to CDI treatment. Batch experiments were conducted at cell voltages of 0.6-, 0.9-, and 1.2 V to study the influence of CDI on the ratio of bromide and dissolved organic carbon, bromine substitution factor, and DBP formation potential (FP). Results showed beneficial aspects of CDI on reducing the levels of these parameters. A maximum DBPFP removal from 1510 to 1160 μg/L was observed at the cell voltage of 0.6 V. For the removed DBPFP, electro-adsorption played a greater role than physical adsorption. However, it is also noted that there could be electrochemical oxidations that led to reduction of humic content and formation of new dichloroacetic acid precursors at high cell voltages. Because of the potential of CDI on reducing health risks from the formation of less brominated DBPs upon subsequent chlorination, it can be considered as a potential technology for DBP control in drinking water treatment.
AB - Formation of brominated disinfection by-products (DBPs) from bromide and natural organic matter upon chlorination imposes health risks to drinking water users. In this study, capacitive deionization (CDI) was evaluated as a potential process for DBP precursor removal. Synthetic humic acid and bromide containing saline water was used as model water prior to CDI treatment. Batch experiments were conducted at cell voltages of 0.6-, 0.9-, and 1.2 V to study the influence of CDI on the ratio of bromide and dissolved organic carbon, bromine substitution factor, and DBP formation potential (FP). Results showed beneficial aspects of CDI on reducing the levels of these parameters. A maximum DBPFP removal from 1510 to 1160 μg/L was observed at the cell voltage of 0.6 V. For the removed DBPFP, electro-adsorption played a greater role than physical adsorption. However, it is also noted that there could be electrochemical oxidations that led to reduction of humic content and formation of new dichloroacetic acid precursors at high cell voltages. Because of the potential of CDI on reducing health risks from the formation of less brominated DBPs upon subsequent chlorination, it can be considered as a potential technology for DBP control in drinking water treatment.
UR - http://www.scopus.com/inward/record.url?scp=84973094011&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84973094011&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2016.05.219
DO - 10.1016/j.scitotenv.2016.05.219
M3 - Article
C2 - 27285792
AN - SCOPUS:84973094011
SN - 0048-9697
VL - 568
SP - 19
EP - 25
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -