TY - JOUR
T1 - Effect of compliant walls on secondary instabilities in boundary-layer transition
AU - Joslin, Ronald D.
AU - Morris, Philip J.
PY - 1992/2
Y1 - 1992/2
N2 - For aerodynamic and hydrodynamic vehicles, it is highly desirable to reduce drag and noise levels. A reduction in drag leads to fuel savings. In particular for submersible vehicles, a decrease in noise levels inhibits detection. A suggested means to obtain these reduction goals is by delaying the transition from laminar to turbulent flow in external boundary layers. For hydrodynamic applications, a passive device that shows promise for transition delays is the compliant coating. In previous studies with a simple mechanical model representing the compliant wall, coatings were found that provided transition delays as predicted from the semiempirical e” method. Those studies were concerned with the linear stage of transition where the instability of concern is referred to as the primary instability. For the flat-plate boundary layer, the Tollmien-Schlichting (TS) wave is the primary instability. In one of those studies, it was shown that three-dimensional (3-D) primary instabilities, or oblique waves, could dominate transition over the coatings considered. From the primary instability, the stretching and tilting of vorticity in the shear flow leads to a secondary instability mechanism. This has been theoretically described by Herbert based on Floquet theory. In the present study, Herbert’s theory is used to predict the development of secondary instabilities over isotropic and nonisotropic compliant walls. Because oblique waves may be dominant over compliant walls, a secondary theory extention is made to allow for these 3-D primary instabilities. The effect of variations in primary amplitude, spanwise wavenumber, and Reynolds number on the secondary instabilities are examined. As in the rigid wall case, over compliant walls the subharmonic mode of secondary instability dominates for low-amplitude primary disturbances. Both isotropic and nonisotropic compliant walls lead to reduced secondary growth rates compared with the rigid wall results. For high frequencies, the nonisotropic wall suppresses the amplification of the secondary instabilities, while instabilities over the isotropic wall may grow with an explosive rate similar to the rigid wall results. For the more important lower frequencies, both isotropic and nonisotropic compliant walls suppress the amplification of secondary instabilities compared with rigid wall results. The twofold major discovery and demonstration of the present investigation are: 1) the use of passive devices, such as compliant walls, can lead to significant reductions in the secondary instability growth rates and amplification; 2) suppressing the primary growth rates and subsequent amplification enable delays in the growth of the explosive secondary instability mechanism.
AB - For aerodynamic and hydrodynamic vehicles, it is highly desirable to reduce drag and noise levels. A reduction in drag leads to fuel savings. In particular for submersible vehicles, a decrease in noise levels inhibits detection. A suggested means to obtain these reduction goals is by delaying the transition from laminar to turbulent flow in external boundary layers. For hydrodynamic applications, a passive device that shows promise for transition delays is the compliant coating. In previous studies with a simple mechanical model representing the compliant wall, coatings were found that provided transition delays as predicted from the semiempirical e” method. Those studies were concerned with the linear stage of transition where the instability of concern is referred to as the primary instability. For the flat-plate boundary layer, the Tollmien-Schlichting (TS) wave is the primary instability. In one of those studies, it was shown that three-dimensional (3-D) primary instabilities, or oblique waves, could dominate transition over the coatings considered. From the primary instability, the stretching and tilting of vorticity in the shear flow leads to a secondary instability mechanism. This has been theoretically described by Herbert based on Floquet theory. In the present study, Herbert’s theory is used to predict the development of secondary instabilities over isotropic and nonisotropic compliant walls. Because oblique waves may be dominant over compliant walls, a secondary theory extention is made to allow for these 3-D primary instabilities. The effect of variations in primary amplitude, spanwise wavenumber, and Reynolds number on the secondary instabilities are examined. As in the rigid wall case, over compliant walls the subharmonic mode of secondary instability dominates for low-amplitude primary disturbances. Both isotropic and nonisotropic compliant walls lead to reduced secondary growth rates compared with the rigid wall results. For high frequencies, the nonisotropic wall suppresses the amplification of the secondary instabilities, while instabilities over the isotropic wall may grow with an explosive rate similar to the rigid wall results. For the more important lower frequencies, both isotropic and nonisotropic compliant walls suppress the amplification of secondary instabilities compared with rigid wall results. The twofold major discovery and demonstration of the present investigation are: 1) the use of passive devices, such as compliant walls, can lead to significant reductions in the secondary instability growth rates and amplification; 2) suppressing the primary growth rates and subsequent amplification enable delays in the growth of the explosive secondary instability mechanism.
UR - http://www.scopus.com/inward/record.url?scp=0026816838&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026816838&partnerID=8YFLogxK
U2 - 10.2514/3.10923
DO - 10.2514/3.10923
M3 - Article
AN - SCOPUS:0026816838
SN - 0001-1452
VL - 30
SP - 332
EP - 339
JO - AIAA journal
JF - AIAA journal
IS - 2
ER -