Effect of electrical pulsing on various heat treatments of 5xxx series aluminum alloys

Wesley A. Salandro, Joshua J. Jones, Timothy A. McNeal, John T. Roth, Sung Tae Hong, Mark T. Smith

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

Previous studies have shown that the presence of a pulsed electrical current, applied during the deformation process of an aluminum specimen, can significantly improve the formability of the aluminum without heating the metal above its maximum operating temperature range. The research herein extends these findings by examining the effect of electrical pulsing on 5052 and 5083 Aluminum Alloys. Two different parameter sets were used while pulsing three different heat treatments (As Is, 398°C, and 510°C) for each of the two aluminum alloys. For this research, the electrical pulsing is applied to the aluminum while the specimens are deformed, without halting the deformation process. The analysis focuses on establishing the effect the electrical pulsing has on the aluminum alloy's various heat treatments by examining the displacement of the material throughout the testing region of dogbone shaped specimens. The results from this research show that pulsing significantly increases the maximum achievable elongation of the aluminum (when compared to baseline tests conducted without electrical pulsing). Significantly reducing the engineering flow stress within the material is another beneficial effect produced by electric pulsing. The electrical pulses also cause the aluminum to deform non-uniformly, such that the material exhibits a diffuse neck where the minimum deformation occurs near the ends of the specimen (near the clamps) and the maximum deformation occurs near the center of the specimen (where fracture ultimately occurs). This diffuse necking effect is similar to what can be experienced during superplastic deformation. However, when comparing the presence of a diffuse neck in this research, electrical pulsing does not create as significant of a diffuse neck as superplastic deformation. Electrical pulsing has the potential to be more efficient than traditional methods of incremental forming since the deformation process is never interrupted. Overall, with the greater elongation and lower stress, the aluminum can be deformed quicker, easier, and to a greater extent than is currently possible.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME International Manufacturing Science and Engineering Conference, MSEC2008
Pages283-292
Number of pages10
DOIs
StatePublished - 2009
EventASME International Manufacturing Science and Engineering Conference, MSEC2008 - Evanston, IL, United States
Duration: Oct 7 2008Oct 10 2008

Publication series

NameProceedings of the ASME International Manufacturing Science and Engineering Conference, MSEC2008
Volume1

Other

OtherASME International Manufacturing Science and Engineering Conference, MSEC2008
Country/TerritoryUnited States
CityEvanston, IL
Period10/7/0810/10/08

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Effect of electrical pulsing on various heat treatments of 5xxx series aluminum alloys'. Together they form a unique fingerprint.

Cite this