TY - GEN
T1 - Effect of excitation amplitude on disturbance field of a transversely forced swirl flow and flame
AU - O’Connor, Jacqueline
N1 - Publisher Copyright:
© 2014, American Institute of Aeronautics and Astronautics Inc. All rights reserved.
PY - 2014
Y1 - 2014
N2 - High amplitude combustion instabilities are a destructive and increasingly pervasive problem in gas turbine combustors. Although much research has focused on measuring the characteristics of these instabilities, there are still many remaining questions about the fluid-mechanic mechanisms that drive the flame oscillations. In particular, a variety of complex disturbance mechanisms arise during velocity-coupled instabilities excited by transverse acoustic modes. The resulting disturbance field has two components-the acoustic velocity fluctuation from both the incident transverse acoustic field and the excited longitudinal field near the nozzle, and the vortical velocity fluctuations arising from acoustic excitation of hydrodynamic instabilities in the flow. In this research, we look at the relative contribution of these two components as the amplitude of transverse excitation increases for a swirling flow and swirl-stabilized flame in a transverse forcing combustor that mimics the geometry of an annular combustor. Proper orthogonal decomposition is tested as a methodology for decomposing the velocity disturbance field and is used to understand the relative contributions of these two disturbance mechanisms.
AB - High amplitude combustion instabilities are a destructive and increasingly pervasive problem in gas turbine combustors. Although much research has focused on measuring the characteristics of these instabilities, there are still many remaining questions about the fluid-mechanic mechanisms that drive the flame oscillations. In particular, a variety of complex disturbance mechanisms arise during velocity-coupled instabilities excited by transverse acoustic modes. The resulting disturbance field has two components-the acoustic velocity fluctuation from both the incident transverse acoustic field and the excited longitudinal field near the nozzle, and the vortical velocity fluctuations arising from acoustic excitation of hydrodynamic instabilities in the flow. In this research, we look at the relative contribution of these two components as the amplitude of transverse excitation increases for a swirling flow and swirl-stabilized flame in a transverse forcing combustor that mimics the geometry of an annular combustor. Proper orthogonal decomposition is tested as a methodology for decomposing the velocity disturbance field and is used to understand the relative contributions of these two disturbance mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=84938376498&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84938376498&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84938376498
T3 - 52nd Aerospace Sciences Meeting
BT - 52nd Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc.
T2 - 52nd Aerospace Sciences Meeting 2014
Y2 - 13 January 2014 through 17 January 2014
ER -