TY - JOUR
T1 - Effect of growth temperature on the microstructure and properties of epitaxial MoS2 monolayers grown by metalorganic chemical vapor deposition
AU - Chen, Chen
AU - Trainor, Nicholas
AU - Kumari, Shalini
AU - Myja, Henrik
AU - Kümmell, Tilmar
AU - Zhang, Zhiyu
AU - Zhang, Yuxi
AU - Bisht, Anuj
AU - Sadaf, Muhtasim Ul Karim
AU - Sakib, Najam U.
AU - Han, Ying
AU - Mc Knight, Thomas V.
AU - Graves, Andrew R.
AU - Leger, Meghan E.
AU - Redwing, Nicholas D.
AU - Kim, Myeongok
AU - Kowalczyk, Dorota Anna
AU - Bacher, Gerd
AU - Alem, Nasim
AU - Yang, Yang
AU - Das, Saptarshi
AU - Redwing, Joan M.
N1 - Publisher Copyright:
© 2024 Author(s).
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Metalorganic chemical vapor deposition (MOCVD) is a promising technique for wafer-scale synthesis of MoS2 monolayers for 2D field-effect transistors (2D-FETs) and related devices. Epitaxial growth of MoS2 on sapphire provides films that are crystallographically well-oriented but typically contain low-angle grain boundaries (e.g., mirror twins), voids, and other defects depending on growth conditions and substrate characteristics. In this study, we investigate microstructure, optical properties, and field-effect characteristics of wafer-scale MoS2 monolayers grown by MOCVD on c-plane sapphire over a narrow window of growth temperatures (900-1000 °C). The density of low-angle grain boundaries in the MoS2 monolayer was found to decrease dramatically from 50% areal coverage for films grown at 900 °C to 5% at 1000 °C. This decrease in low-angle grain boundary density is correlated with an increase in the room-temperature photoluminescence intensity of A excitons and a decrease in the full-width-half maximum (FWHM) of the Raman A1g peak, which are typically indicative of a general reduction in defects in MoS2. However, the best transport properties (e.g., mean field-effect mobility mFE= 17.3 cm2/V s) were obtained in MoS2 monolayers grown at an intermediate temperature of 950 °C. It was found that as the growth temperature increased, small regions bound by high-angle boundaries begin to appear within the monolayer and increase in areal coverage, from ∼2% at 900 °C to ∼5% at 950 °C to ∼10% at 1000 °C. The growth temperature of 950 °C, therefore, provides an intermediate condition where the combined effects of low-angle and high-angle boundaries are minimized. The results of this study provide guidance on MOCVD growth and characterization that can be used to further optimize the performance of MoS2 2D-FETs.
AB - Metalorganic chemical vapor deposition (MOCVD) is a promising technique for wafer-scale synthesis of MoS2 monolayers for 2D field-effect transistors (2D-FETs) and related devices. Epitaxial growth of MoS2 on sapphire provides films that are crystallographically well-oriented but typically contain low-angle grain boundaries (e.g., mirror twins), voids, and other defects depending on growth conditions and substrate characteristics. In this study, we investigate microstructure, optical properties, and field-effect characteristics of wafer-scale MoS2 monolayers grown by MOCVD on c-plane sapphire over a narrow window of growth temperatures (900-1000 °C). The density of low-angle grain boundaries in the MoS2 monolayer was found to decrease dramatically from 50% areal coverage for films grown at 900 °C to 5% at 1000 °C. This decrease in low-angle grain boundary density is correlated with an increase in the room-temperature photoluminescence intensity of A excitons and a decrease in the full-width-half maximum (FWHM) of the Raman A1g peak, which are typically indicative of a general reduction in defects in MoS2. However, the best transport properties (e.g., mean field-effect mobility mFE= 17.3 cm2/V s) were obtained in MoS2 monolayers grown at an intermediate temperature of 950 °C. It was found that as the growth temperature increased, small regions bound by high-angle boundaries begin to appear within the monolayer and increase in areal coverage, from ∼2% at 900 °C to ∼5% at 950 °C to ∼10% at 1000 °C. The growth temperature of 950 °C, therefore, provides an intermediate condition where the combined effects of low-angle and high-angle boundaries are minimized. The results of this study provide guidance on MOCVD growth and characterization that can be used to further optimize the performance of MoS2 2D-FETs.
UR - http://www.scopus.com/inward/record.url?scp=85183948460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85183948460&partnerID=8YFLogxK
U2 - 10.1116/6.0003296
DO - 10.1116/6.0003296
M3 - Article
AN - SCOPUS:85183948460
SN - 0734-2101
VL - 42
JO - Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
JF - Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
IS - 2
M1 - 022201
ER -