TY - JOUR
T1 - Effect of incremental flaxseed supplementation of an herbage diet on methane output and ruminal fermentation in continuous culture
AU - Soder, K. J.
AU - Brito, A. F.
AU - Rubano, M. D.
AU - Dell, C. J.
PY - 2012/7
Y1 - 2012/7
N2 - A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of increasing flaxseed (Linum usitatissimum) supplementation of an herbage-based diet on nutrient digestibility, microbial N synthesis, and methane (CH 4) output. Treatments were randomly assigned to fermentors in a 4×4 Latin square design, with 7d for diet adaptation and 3d for data and sample collection. Treatments were 0, 5, 10, and 15% ground flaxseed supplementation of an orchardgrass (Dactylis glomerata L.) diet [70g of total dry matter (DM) fed daily]. Samples were collected from the fermentors 4 times daily at feeding (0730, 1030, 1400, and 1900h) on d 8 to 10 of each of four 10-d periods and analyzed for pH, ammonia-N, and volatile fatty acids. Gas samples for CH 4 analysis were collected immediately before and 1 and 2h after the 0730h feeding on d 8, 9, and 10 and at the 1400h feeding on d 7, 8, and 9 of each period. Effluents were analyzed for DM, organic matter, crude protein, and neutral detergent fiber for determination of nutrient digestibilities, and for total purine concentration for estimation of microbial protein synthesis. Apparent DM, organic matter, and neutral detergent fiber digestibilities decreased linearly with increasing supplemental flaxseed, whereas true DM and organic matter digestibilities were not significantly affected by treatment, averaging 77.6 and 79.1%, respectively. Mean ruminal pH and concentration of total volatile fatty acids were not significantly affected by increasing the dietary concentration of flaxseed, averaging 6.68 and 55.9mmol/L across treatments, respectively. However, molar proportions of acetate and propionate increased linearly, whereas those of butyrate and valerate decreased linearly with increasing flaxseed supplementation. Although CH 4 output decreased linearly as supplemental flaxseed increased from 0 to 15% of diet DM, ammonia-N concentration, apparent crude protein digestibility, and microbial N synthesis did not differ across treatments. Incremental ground flaxseed supplementation of an herbage-based diet resulted in a corresponding decrease in CH 4 output in a dual-flow continuous culture fermentor system. However, apparent nutrient digestibility also decreased with flaxseed supplementation, which, at the cow level, could result in decreased DM intake, milk production, or both.
AB - A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of increasing flaxseed (Linum usitatissimum) supplementation of an herbage-based diet on nutrient digestibility, microbial N synthesis, and methane (CH 4) output. Treatments were randomly assigned to fermentors in a 4×4 Latin square design, with 7d for diet adaptation and 3d for data and sample collection. Treatments were 0, 5, 10, and 15% ground flaxseed supplementation of an orchardgrass (Dactylis glomerata L.) diet [70g of total dry matter (DM) fed daily]. Samples were collected from the fermentors 4 times daily at feeding (0730, 1030, 1400, and 1900h) on d 8 to 10 of each of four 10-d periods and analyzed for pH, ammonia-N, and volatile fatty acids. Gas samples for CH 4 analysis were collected immediately before and 1 and 2h after the 0730h feeding on d 8, 9, and 10 and at the 1400h feeding on d 7, 8, and 9 of each period. Effluents were analyzed for DM, organic matter, crude protein, and neutral detergent fiber for determination of nutrient digestibilities, and for total purine concentration for estimation of microbial protein synthesis. Apparent DM, organic matter, and neutral detergent fiber digestibilities decreased linearly with increasing supplemental flaxseed, whereas true DM and organic matter digestibilities were not significantly affected by treatment, averaging 77.6 and 79.1%, respectively. Mean ruminal pH and concentration of total volatile fatty acids were not significantly affected by increasing the dietary concentration of flaxseed, averaging 6.68 and 55.9mmol/L across treatments, respectively. However, molar proportions of acetate and propionate increased linearly, whereas those of butyrate and valerate decreased linearly with increasing flaxseed supplementation. Although CH 4 output decreased linearly as supplemental flaxseed increased from 0 to 15% of diet DM, ammonia-N concentration, apparent crude protein digestibility, and microbial N synthesis did not differ across treatments. Incremental ground flaxseed supplementation of an herbage-based diet resulted in a corresponding decrease in CH 4 output in a dual-flow continuous culture fermentor system. However, apparent nutrient digestibility also decreased with flaxseed supplementation, which, at the cow level, could result in decreased DM intake, milk production, or both.
UR - http://www.scopus.com/inward/record.url?scp=84862536052&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862536052&partnerID=8YFLogxK
U2 - 10.3168/jds.2011-4981
DO - 10.3168/jds.2011-4981
M3 - Article
C2 - 22720950
AN - SCOPUS:84862536052
SN - 0022-0302
VL - 95
SP - 3961
EP - 3969
JO - Journal of dairy science
JF - Journal of dairy science
IS - 7
ER -