Effect of nonuniform inlet conditions on endwall secondary flows

K. S. Hermanson, K. A. Thole

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Exit combustor flow and thermal fields entering downstream stator vane passages in a gas turbine engine are highly nonuniform. These flow and thermal fields can significantly affect the development of the secondary flows in the turbine passages contributing to high platform heat transfer and large aerodynamic losses. The flow and thermal fields combine to give nonuniform total pressure profiles entering the turbine passage which, along with the airfoil geometry, dictate the secondary flow field. This paper presents an analysis of the effects of varying total pressure profiles in both the radial and combined radial and circumferential directions on the secondary flowfields in a first-stage stator vane. These inlet conditions used for the first vane simulations are based on the exit conditions predicted for a combustor. Prior to using the predictions, these CFD simulations were bench-marked against flowfield data measured in a large-scale, linear, turbine vane cascade. Good agreement occurred between the computational predictions and experimentally measured secondary flows. Analyses of the results for several different cases indicate variations in the secondary flow pattern from pitch to pitch, which attributes to the rationale as to why some airfoils quickly degrade while others remain intact over time.

Original languageEnglish (US)
Pages (from-to)623-631
Number of pages9
JournalJournal of Turbomachinery
Volume124
Issue number4
DOIs
StatePublished - Oct 2002

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Effect of nonuniform inlet conditions on endwall secondary flows'. Together they form a unique fingerprint.

Cite this