Abstract
This study investigates the variation of magnetoelectric (ME) coefficient as a function of the piezoelectric grain size in the composite system of 0.8 Pb(Zr0.52Ti0.48)O3-0.2 Ni0.8Zn 0.2Fe2O4. It was found that as the piezoelectric-phase grain size increases the overall resistivity, piezoelectric, dielectric, and ferroelectric property of the composite increases and saturates above 600 nm. Below 200 nm average grain size, piezoelectric and dielectric properties decrease rapidly. The ferroelectric Curie temperature was found to decrease from 377 to 356 °C as the average grain size decreases from 830 to 111 nm. ME coefficient of the composite showed a rapid change below grain size of 200 nm and was found to saturate above 600 nm to a value of 155 mV/cm.Oe.
Original language | English (US) |
---|---|
Pages (from-to) | 3560-3568 |
Number of pages | 9 |
Journal | Journal of Materials Science |
Volume | 43 |
Issue number | 10 |
DOIs | |
State | Published - May 2008 |
All Science Journal Classification (ASJC) codes
- Mechanics of Materials
- Ceramics and Composites
- Mechanical Engineering
- Polymers and Plastics
- General Materials Science
- Materials Science (miscellaneous)