Abstract
A model is presented that estimates the effect of radiation damage on stress corrosion cracking (SCC), resulting from microstructural evolution induced by irradiation. The model is based on the Ford-Andresen film-rupture and slip-dissolution model and on the observation that the crack propagation rate increases as the material hardens. The model relates the neutron and gamma exposure to the irradiation hardening and consequent increase in the crack tip strain rate. A chemical rate theory model was employed to describe the evolution of microstructure in stainless steel leading to radiation hardening. The increase in yield stress can be correlated to an increase in the crack tip strain rate, and thus to SCC behavior. This approach was used to evaluate the effects of irradiation hardening on core shroud cracking. The results show that hardening can have a substantial effect on core shroud cracking.
Original language | English (US) |
---|---|
Pages (from-to) | 483-488 |
Number of pages | 6 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 540 |
State | Published - 1999 |
Event | Proceedings of the 1998 MRS Fall Meeting - The Symposium 'Advanced Catalytic Materials-1998' - Boston, MA, USA Duration: Nov 30 1998 → Dec 3 1998 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering