Effect of rhamnolipids on permeability across Caco-2 cell monolayers

Charity J. Wallace, Scott H. Medina, Mohamed E.H. ElSayed

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Purpose: This report describes the effect of rhamnolipids (RLs), an amphiphilic biosurfactant produced by the bacterium Pseudomonas aeruginosa, on the integrity and permeability across Caco-2 cell monolayers. Methods: We measured the trans-epithelial electrical resistance (TEER) and permeability of [14C]mannitol across Caco-2 cell monolayers upon incubation with 0.01-5.0% v/v RLs as a function of incubation time (30, 60, 90, and 120 min). We also studied the recovery of RL-treated Caco-2 cell monolayers upon incubation with Kaempferol, which is a natural flavonoid that promotes the assembly of the tight junctions. Results: TEER of Caco-2 cell monolayers incubated with 0.01-5.0% v/v RLs solution dropped to 80-28% of that of untreated cells. Decline in TEER was associated with an increase in [14C]mannitol permeability as a function of RLs concentration and incubation time with Caco-2 cells. Incubation of RLs-treated Caco-2 cell monolayers with normal culture medium for 48 h did not restore barrier integrity. Whereas, incubation of a RLs-treated Caco-2 cells with culture medium containing Kaempferol for 24 h restored barrier function indicated by the higher TEER and lower [ 14C]mannitol permeability values. Conclusions: These results show the ability of RLs to modulate the integrity and permeability of Caco-2 cell monolayers in a concentration- and time-dependent fashion, which suggest their potential to function as a non-toxic permeation enhancer.

Original languageEnglish (US)
Pages (from-to)887-894
Number of pages8
JournalPharmaceutical Research
Volume31
Issue number4
DOIs
StatePublished - Apr 2014

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry
  • Pharmacology (medical)

Fingerprint

Dive into the research topics of 'Effect of rhamnolipids on permeability across Caco-2 cell monolayers'. Together they form a unique fingerprint.

Cite this