Abstract
Purpose: This report describes the effect of rhamnolipids (RLs), an amphiphilic biosurfactant produced by the bacterium Pseudomonas aeruginosa, on the integrity and permeability across Caco-2 cell monolayers. Methods: We measured the trans-epithelial electrical resistance (TEER) and permeability of [14C]mannitol across Caco-2 cell monolayers upon incubation with 0.01-5.0% v/v RLs as a function of incubation time (30, 60, 90, and 120 min). We also studied the recovery of RL-treated Caco-2 cell monolayers upon incubation with Kaempferol, which is a natural flavonoid that promotes the assembly of the tight junctions. Results: TEER of Caco-2 cell monolayers incubated with 0.01-5.0% v/v RLs solution dropped to 80-28% of that of untreated cells. Decline in TEER was associated with an increase in [14C]mannitol permeability as a function of RLs concentration and incubation time with Caco-2 cells. Incubation of RLs-treated Caco-2 cell monolayers with normal culture medium for 48 h did not restore barrier integrity. Whereas, incubation of a RLs-treated Caco-2 cells with culture medium containing Kaempferol for 24 h restored barrier function indicated by the higher TEER and lower [ 14C]mannitol permeability values. Conclusions: These results show the ability of RLs to modulate the integrity and permeability of Caco-2 cell monolayers in a concentration- and time-dependent fashion, which suggest their potential to function as a non-toxic permeation enhancer.
Original language | English (US) |
---|---|
Pages (from-to) | 887-894 |
Number of pages | 8 |
Journal | Pharmaceutical Research |
Volume | 31 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2014 |
All Science Journal Classification (ASJC) codes
- Biotechnology
- Molecular Medicine
- Pharmacology
- Pharmaceutical Science
- Organic Chemistry
- Pharmacology (medical)