TY - GEN
T1 - Effect of sensor failure on dynamometry calibration
AU - Vlajic, Nicholas
AU - Jonson, Michael
AU - Guers, Manton
N1 - Publisher Copyright:
© 2020 ASME.
PY - 2020
Y1 - 2020
N2 - Dynamometers are used to measure integrated fluid dynamic loads such as thrust, torque or side forces. To resolve all of three force and three moment components, multiple embedded force gages are often used. Due to arrangement, static loads, and redundancy, the number of sensor channels can exceed the six degrees of freedom needed to resolve the generalized rigid body forces. This paper considers modeling of the force gages as simple springs to develop an elastic model of the dynamometer. The method was applied to a dynamometer consisting of six threecomponent force gages arranged in an axisymmetric ring. A calibration matrix based on the elastic model with individual force gage sensitivities was shown to match a full calibration matrix where properly summed force gage voltages were obtained under global load application. The elastic model was then extended to consider calibration matrices where sensors were assumed to fail. In this scenario, several virtual loads were applied to the dynamometer and the calibration matrix was obtained by minimizing the least square error. It was found that nearly half of the sensors could be lost and still a virtual calibration could be applied to the measurements. Extending the least square idea, an actual in-situ calibration matrix was formed by striking the dynamometer with a diverse set of instrumented hammer strikes. This calibration matrix also agreed with the other calibrations at frequencies below where system dynamics become important.
AB - Dynamometers are used to measure integrated fluid dynamic loads such as thrust, torque or side forces. To resolve all of three force and three moment components, multiple embedded force gages are often used. Due to arrangement, static loads, and redundancy, the number of sensor channels can exceed the six degrees of freedom needed to resolve the generalized rigid body forces. This paper considers modeling of the force gages as simple springs to develop an elastic model of the dynamometer. The method was applied to a dynamometer consisting of six threecomponent force gages arranged in an axisymmetric ring. A calibration matrix based on the elastic model with individual force gage sensitivities was shown to match a full calibration matrix where properly summed force gage voltages were obtained under global load application. The elastic model was then extended to consider calibration matrices where sensors were assumed to fail. In this scenario, several virtual loads were applied to the dynamometer and the calibration matrix was obtained by minimizing the least square error. It was found that nearly half of the sensors could be lost and still a virtual calibration could be applied to the measurements. Extending the least square idea, an actual in-situ calibration matrix was formed by striking the dynamometer with a diverse set of instrumented hammer strikes. This calibration matrix also agreed with the other calibrations at frequencies below where system dynamics become important.
UR - http://www.scopus.com/inward/record.url?scp=85101234305&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101234305&partnerID=8YFLogxK
U2 - 10.1115/IMECE2020-24264
DO - 10.1115/IMECE2020-24264
M3 - Conference contribution
AN - SCOPUS:85101234305
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Acoustics, Vibration, and Phononics
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2020 International Mechanical Engineering Congress and Exposition, IMECE 2020
Y2 - 16 November 2020 through 19 November 2020
ER -